Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum

被引:17
作者
Gayen, Kalyan
Venkatesh, K. V. [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Sch Biosci & Bioengn, Bombay 400076, Maharashtra, India
关键词
D O I
10.1186/1471-2105-7-445
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates. Results: Quantification of the fluxes of the elementary modes in the metabolism of C. glutamicum was formulated as linear programming. The analysis demonstrated that the solution was dependent on the criteria of objective function when less than four accumulation rates of the external metabolites were considered. The analysis yielded feasible ranges of fluxes of elementary modes that satisfy the experimental accumulation rates. In C. glutamicum, the elementary modes relating to biomass synthesis through glycolysis and TCA cycle were predominantly operational in the initial growth phase. At a later time, the elementary modes contributing to lysine synthesis became active. The oxygen and ammonia uptake rates were shown to be bounded in the phenotypic space due to the stoichiometric constraint of the elementary modes. Conclusion: We have demonstrated the use of elementary modes and the linear programming to quantify a metabolic network. We have used the methodology to quantify the network of C. glutamicum, which evaluates the set of operational elementary modes at different phases of fermentation. The methodology was also used to determine the feasible solution space for a given set of substrate uptake rates under specific optimization criteria. Such an approach can be used to determine the optimality of the accumulation rates of any metabolite in a given network.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Lessons from metabolic engineering for functional genomics and drug discovery [J].
Bailey, JE .
NATURE BIOTECHNOLOGY, 1999, 17 (07) :616-618
[2]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[3]   PYRUVATE OVERFLOW AND CARBON FLUX WITHIN THE CENTRAL METABOLIC PATHWAYS OF CORYNEBACTERIUM-GLUTAMICUM DURING GROWTH ON LACTATE [J].
COCAIGNBOUSQUET, M ;
LINDLEY, ND .
ENZYME AND MICROBIAL TECHNOLOGY, 1995, 17 (03) :260-267
[4]  
DEGRAAF, 2000, BIOREACTION ENG MODE, P506
[5]  
DUETZ P, 1996, CLIN CHEM, V42, P1609
[6]  
Edwards JS, 1998, BIOTECHNOL BIOENG, V58, P162, DOI 10.1002/(SICI)1097-0290(19980420)58:2/3<162::AID-BIT8>3.0.CO
[7]  
2-J
[8]   Metabolic modelling of microbes: the flux-balance approach [J].
Edwards, JS ;
Covert, M ;
Palsson, B .
ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (03) :133-140
[9]   Characterizing the metabolic phenotype: A phenotype phase plane analysis [J].
Edwards, JS ;
Ramakrishna, R ;
Palsson, BO .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 77 (01) :27-36
[10]   A functional genomics approach using metabolomics and in silico pathway analysis [J].
Förster, J ;
Gombert, AK ;
Nielsen, J .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (07) :703-712