Limit theorems for continuous-time random walks with infinite mean waiting times

被引:320
作者
Meerschaert, MM [1 ]
Scheffler, HP
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
关键词
operator self-similar process; continuous-time random walk;
D O I
10.1239/jap/1091543414
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Levy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.
引用
收藏
页码:623 / 638
页数:16
相关论文
共 45 条
[1]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[2]  
Baeumer B., 2001, FRACT CALCU APPL ANA, V4, P481
[3]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[4]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[5]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[6]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[7]  
Bertoin J., 1996, Levy Processes
[8]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[9]   LIMIT THEOREMS FOR OCCUPATION TIMES OF MARKOV PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01) :1-&
[10]   TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS [J].
BLUMEN, A ;
ZUMOFEN, G ;
KLAFTER, J .
PHYSICAL REVIEW A, 1989, 40 (07) :3964-3974