Spinal cord repair: Progress towards a daunting goal

被引:7
作者
Waxman, SG
Kocsis, JD
机构
[1] YALE UNIV,SCH MED,DEPT NEUROL,LCI 707,NEW HAVEN,CT 06510
[2] VET ADM MED CTR,CTR NEUROSCI,EPVA,PVA,W HAVEN,CT 06516
关键词
neurotrophins; FGF; cell transplantation; glial cells; Schwann cells; white matter; gray matter; myelination;
D O I
10.1177/107385849700300414
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Research over the past decade has demonstrated that, under some circumstances, structural reorganization of the CNS, including the spinal cord, can occur after injury, raising hopes that spinal cord repair associated with functional recovery, although a daunting goal, may not be an unreachable one, This brief review discusses recent approaches to this problem: use of neurotrophins and the rerouting of axons within the transected spinal cord from white matter to gray matter through nerve grafts, and the transplantation of exogenous myelin-forming glial cells to spinal cord tracts in which myelin has been lost. Results available to date indicate that, in models mimicking some aspects of human spinal cord injury, these approaches may yield anatomical repair that is associated with partial restoration of physiological and behavioral function. Many important questions remain unanswered, Nevertheless, although the clinical goal of repairing spinal cords in humans is a very challenging one, results in animal models suggest that spinal cord repair is a realistic objective and provide a glimpse of what is likely to be a period of rapid progress.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 55 条
[1]   DEGENERATIVE AND REGENERATIVE RESPONSES OF INJURED NEURONS IN THE CENTRAL-NERVOUS-SYSTEM OF ADULT MAMMALS [J].
AGUAYO, AJ ;
RASMINSKY, M ;
BRAY, GM ;
CARBONETTO, S ;
MCKERRACHER, L ;
VILLEGASPEREZ, MP ;
VIDALSANZ, M ;
CARTER, DA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 331 (1261) :337-343
[2]   SUPPRESSION OF REMYELINATION IN CNS BY X-IRRADIATION [J].
BLAKEMORE, WF ;
PATTERSON, RC .
ACTA NEUROPATHOLOGICA, 1978, 42 (02) :105-113
[3]   THE USE OF CULTURED AUTOLOGOUS SCHWANN-CELLS TO REMYELINATE AREAS OF PERSISTENT DEMYELINATION IN THE CENTRAL NERVOUS-SYSTEM [J].
BLAKEMORE, WF ;
CRANG, AJ .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1985, 70 (02) :207-223
[4]   CELLULAR MORPHOLOGY OF CHRONIC SPINAL-CORD INJURY IN THE CAT - ANALYSIS OF MYELINATED AXONS BY LINE-SAMPLING [J].
BLIGHT, AR .
NEUROSCIENCE, 1983, 10 (02) :521-&
[5]   CENTRAL AXONS IN INJURED CAT SPINAL-CORD RECOVER ELECTROPHYSIOLOGICAL FUNCTION FOLLOWING REMYELINATION BY SCHWANN-CELLS [J].
BLIGHT, AR ;
YOUNG, W .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1989, 91 (1-2) :15-34
[6]   A RANDOMIZED, CONTROLLED TRIAL OF METHYLPREDNISOLONE OR NALOXONE IN THE TREATMENT OF ACUTE SPINAL-CORD INJURY - RESULTS OF THE 2ND NATIONAL ACUTE SPINAL-CORD INJURY STUDY [J].
BRACKEN, MB ;
SHEPARD, MJ ;
COLLINS, WF ;
HOLFORD, TR ;
YOUNG, W ;
BASKIN, DS ;
EISENBERG, HM ;
FLAMM, E ;
LEOSUMMERS, L ;
MAROON, J ;
MARSHALL, LF ;
PEROT, PL ;
PIEPMEIER, J ;
SONNTAG, VKH ;
WAGNER, FC ;
WILBERGER, JE ;
WINN, HR .
NEW ENGLAND JOURNAL OF MEDICINE, 1990, 322 (20) :1405-1411
[7]   RECOVERY FROM SPINAL-CORD INJURY MEDIATED BY ANTIBODIES TO NEURITE GROWTH-INHIBITORS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
SCHNELL, L ;
DAI, HN ;
GAO, D ;
SCHWAB, ME .
NATURE, 1995, 378 (6556) :498-501
[8]  
BUNGE RP, 1993, ADV NEUROL, V59, P75
[9]  
CAJAL SRY, 1928, STUDIES DEGENERATION
[10]   ANTIBODY AGAINST MYELIN-ASSOCIATED INHIBITOR OF NEURITE GROWTH NEUTRALIZES NONPERMISSIVE SUBSTRATE PROPERTIES OF CNS WHITE MATTER [J].
CARONI, P ;
SCHWAB, ME .
NEURON, 1988, 1 (01) :85-96