A process-oriented model of N2O and NO emissions from forest soils:: 1.: Model development

被引:435
作者
Li, CS [1 ]
Aber, J
Stange, F
Butterbach-Bahl, K
Papen, H
机构
[1] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
[2] Fraunhofer Inst Atmosphar Umweltforsch, IFU, Dept Soil Microbiol, Div Biopshere Atmosphere Exchange, D-82467 Garmisch Partenkirchen, Germany
关键词
D O I
10.1029/1999JD900949
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
To predict emissions of nitrous oxide (N2O) and nitric oxide (NO) from forest soils, we have developed a process-oriented model by integrating several new features with three existing models, PnET, Denitriftcation-Decomposition (DNDC), and a nitrification model. In the new model, two components were established to predict (1) the effects of ecological drivers (e.g., climate, soil, vegetation, and anthropogenic activity) on soil environmental factors (e.g., temperature, moisture, pH, redox potential, and substrates concentrations), and (2) effects of the soil environmental factors on the biochemical or geochemical reactions which govern NO and N2O production and consumption. The first component consists of three submodels for predicting soil climate, forest growth, and turnover of soil organic matter. The second component contains two submodels for nitrification and denitrification. A kinetic scheme, a so-called "anaerobic balloon," was developed to calculate the anaerobic status of the soil and divide the soil into aerobic and anaerobic fractions. Nitrification is only allowed to occur in the aerobic fraction, while denitrification occurs only in the anaerobic fraction. The size of the anaerobic balloon is defined by the simulated oxygen partial pressure which is calculated based on oxygen diffusion and consumption rates in the soil. As the balloon swells or shrinks, the model dynamically allocates substrates (e.g., dissolved organic carbon, ammonium, nitrate, etc.) into the aerobic and anaerobic fractions. With this approach, the model is able to predict both nitrification and denitrification in the same soil at the same time. This feature is important for soils where aerobic and anaerobic microsites often exist simultaneously. With the kinetic framework as well as its interacting functions, the PnET-N-DNDC model links ecological drivers to trace gas emissions. Tests for validating the new model are published in a companion paper [Stange er al., this issue].
引用
收藏
页码:4369 / 4384
页数:16
相关论文
共 144 条
[1]   Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis compared with measurements by eddy correlation [J].
Aber, JD ;
Reich, PB ;
Goulden, ML .
OECOLOGIA, 1996, 106 (02) :257-265
[2]   A GENERALIZED, LUMPED-PARAMETER MODEL OF PHOTOSYNTHESIS, EVAPOTRANSPIRATION AND NET PRIMARY PRODUCTION IN TEMPERATE AND BOREAL FOREST ECOSYSTEMS [J].
ABER, JD ;
FEDERER, CA .
OECOLOGIA, 1992, 92 (04) :463-474
[3]   Predicting the effects of climate change on water yield and forest production in the northeastern United States [J].
Aber, JD ;
Ollinger, SV ;
Federer, CA ;
Reich, PB ;
Goulden, ML ;
Kicklighter, DW ;
Melillo, JM ;
Lathrop, RG .
CLIMATE RESEARCH, 1995, 5 (03) :207-222
[4]   SIMULTANEOUS FIELD-MEASUREMENTS OF BIOGENIC EMISSIONS OF NITRIC-OXIDE AND NITROUS-OXIDE [J].
ANDERSON, IC ;
LEVINE, JS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D1) :965-976
[5]   RELATIVE RATES OF NITRIC-OXIDE AND NITROUS-OXIDE PRODUCTION BY NITRIFIERS, DENITRIFIERS, AND NITRATE RESPIRERS [J].
ANDERSON, IC ;
LEVINE, JS .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (05) :938-945
[6]  
[Anonymous], 1979, PROPERTIES MANAGEMEN
[7]   Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill mountains, USA [J].
Ashby, JA ;
Bowden, WB ;
Murdoch, PS .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (07) :853-864
[8]   ANALYSIS OF DOUBLE-SUBSTRATE LIMITED GROWTH [J].
BADER, FG .
BIOTECHNOLOGY AND BIOENGINEERING, 1978, 20 (02) :183-202
[9]   EFFECTS OF TEMPERATURE ONNO3- AND NO2- REDUCTION, NITROGENOUS GAS PRODUCTION, AND REDOX POTENTIAL IN A SATURATED SOIL [J].
BAILEY, LD ;
BEAUCHAMP, EG .
CANADIAN JOURNAL OF SOIL SCIENCE, 1973, 53 (02) :213-218
[10]   EFFECTS OF SOIL VARIABLES AND SEASON ON THE PRODUCTION AND CONSUMPTION OF NITRIC-OXIDE IN OXIC SOILS [J].
BAUMGARTNER, M ;
CONRAD, R .
BIOLOGY AND FERTILITY OF SOILS, 1992, 14 (03) :166-174