The growing landscape of lysine acetylation links metabolism and cell signalling

被引:1005
作者
Choudhary, Chunaram [1 ]
Weinert, Brian T. [1 ]
Nishida, Yuya [2 ]
Verdin, Eric [2 ]
Mann, Matthias [1 ,3 ]
机构
[1] Univ Copenhagen, Fac Hlth Sci, Novo Nordisk Fdn Ctr Prot Res, DK-2200 Copenhagen, Denmark
[2] Univ Calif San Francisco, Gladstone Inst, San Francisco, CA 94158 USA
[3] Max Planck Inst Biochem, Dept Prote & Signal Transduct, D-82152 Martinsried, Germany
关键词
MITOCHONDRIAL PROTEIN ACETYLATION; TANDEM PHD FINGER; HISTONE ACETYLATION; CROSS-TALK; POSTTRANSLATIONAL MODIFICATIONS; REVEALS EVOLUTIONARY; ACETYLOME ANALYSIS; ACTIVE-SITE; DNA-BINDING; PHOSPHORYLATION;
D O I
10.1038/nrm3841
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acytations, such as fornnylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
引用
收藏
页码:536 / 550
页数:15
相关论文
共 169 条
[1]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[2]   KAT(ching) Metabolism by the Tail: Insight into the Links between Lysine Acetyltransferases and Metabolism [J].
Albaugh, Brittany N. ;
Arnold, Kevin M. ;
Denu, John M. .
CHEMBIOCHEM, 2011, 12 (02) :290-298
[3]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[4]   Mechanism of sirtuin inhibition by nicotinamide:: Altering the NAD+ cosubstrate specificity of a Sir2 enzyme [J].
Avalos, JL ;
Bever, KM ;
Wolberger, C .
MOLECULAR CELL, 2005, 17 (06) :855-868
[5]  
Bantscheff M, 2012, ANAL BIOANAL CHEM, V404, P939, DOI 10.1007/s00216-012-6203-4
[6]   SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation [J].
Barber, Matthew F. ;
Michishita-Kioi, Eriko ;
Xi, Yuanxin ;
Tasselli, Luisa ;
Kioi, Mitomu ;
Moqtaderi, Zarmik ;
Tennen, Ruth I. ;
Paredes, Silvana ;
Young, Nicolas L. ;
Chen, Kaifu ;
Struhl, Kevin ;
Garcia, Benjamin A. ;
Gozani, Or ;
Li, Wei ;
Chua, Katrin F. .
NATURE, 2012, 487 (7405) :114-+
[7]   Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response [J].
Beli, Petra ;
Lukashchuk, Natalia ;
Wagner, Sebastian A. ;
Weinert, Brian T. ;
Olsen, Jesper V. ;
Baskcomb, Linda ;
Mann, Matthias ;
Jackson, Stephen P. ;
Choudhary, Chunaram .
MOLECULAR CELL, 2012, 46 (02) :212-225
[8]   Systematic Functional Prioritization of Protein Posttranslational Modifications [J].
Beltrao, Pedro ;
Albanese, Veronique ;
Kenner, Lillian R. ;
Swaney, Danielle L. ;
Burlingame, Alma ;
Villen, Judit ;
Lim, Wendell A. ;
Fraser, James S. ;
Frydman, Judith ;
Krogan, Nevan J. .
CELL, 2012, 150 (02) :413-425
[9]   Catalytic mechanism of a MYST family histone acetyltransferase [J].
Berndsen, Christopher E. ;
Albaugh, Brittany N. ;
Tan, Song ;
Denu, John M. .
BIOCHEMISTRY, 2007, 46 (03) :623-629
[10]   Catalysis and substrate selection by histone/protein lysine acetyltransferases [J].
Berndsen, Christopher E. ;
Denu, John M. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (06) :682-689