Nitric oxide signaling in the cardiovascular system: implications for heart failure

被引:60
作者
Saraiva, Roberto M.
Hare, Joshua
机构
[1] Johns Hopkins Med Inst, Div Cardiol, Dept Med, Baltimore, MD 21205 USA
[2] Univ Fed Sao Paulo, Sao Paulo, Brazil
关键词
heart failure; nitric oxide; nitric oxide synthase; reactive oxygen species;
D O I
10.1097/01.hco.0000221584.56372.dc
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review The role played by nitric oxide (NO) in cardiovascular physiology remains highly controversial. Following the discovery that NO is the prototypic endothelium-derived relaxing factor, this signaling molecule was implicated as possessing many other biological actions within the cardiovascular system, including effects on cardiac contraction, relaxation, and energetics. Here, we discuss new concepts regarding NO signaling, its effector pathways, and interactions between NO and the redox milieu within a framework of cardiac physiology and pathophysiology. Recent findings Major recent insights that have advanced understanding of the mechanisms of NO bioactivity include the following. (1) NO acts in subcellular signaling compartments or modules. (2) S-nitrosylation (covalent modification of cysteine thiol moieties) of proteins represents a prototypic second messenger signaling mode in biologic systems. (3) Reactive oxygen and nitrogen species work together to facilitate signaling. (4) Disruption of physiologic signaling can occur by either increased formation of reactive oxygen species or decreased production of reactive nitrogen species, a situation of nitroso-redox imbalance. Summary These insights, which challenge classically held views that NO acts as a freely diffusible molecule regulated primarily by concentration and exerting signaling primarily through cyclic GMP production, offer a new perspective on the pathophysiology and treatment of congestive heart failure.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 72 条
[1]   CONTROL OF CARDIAC-MUSCLE CELL-FUNCTION BY AN ENDOGENOUS NITRIC-OXIDE SIGNALING SYSTEM [J].
BALLIGAND, JL ;
KELLY, RA ;
MARSDEN, PA ;
SMITH, TW ;
MICHEL, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) :347-351
[2]   NITRIC OXIDE-DEPENDENT PARASYMPATHETIC SIGNALING IS DUE TO ACTIVATION OF CONSTITUTIVE ENDOTHELIAL (TYPE-III) NITRIC-OXIDE SYNTHASE IN CARDIAC MYOCYTES [J].
BALLIGAND, JL ;
KOBZIK, L ;
HAN, XQ ;
KAYE, DM ;
BELHASSEN, L ;
OHARA, DS ;
KELLY, RA ;
SMITH, TW ;
MICHEL, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14582-14586
[3]   Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms [J].
Barouch, LA ;
Harrison, RW ;
Skaf, MW ;
Rosas, GO ;
Cappola, TP ;
Kobeissi, ZA ;
Hobai, IA ;
Lemmon, CA ;
Burnett, AL ;
O'Rourke, B ;
Rodriguez, ER ;
Huang, PL ;
Lima, JAC ;
Berkowitz, DE ;
Hare, JM .
NATURE, 2002, 416 (6878) :337-340
[4]   Simvastatin restores endothelial NO-mediated vasorelaxation in large arteries after myocardial infarction [J].
Bates, K ;
Ruggeroli, CE ;
Goldman, S ;
Gaballa, MA .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (02) :H768-H775
[5]   Nitric oxide and the heart - Update on new paradigms [J].
Belge, C ;
Massion, PB ;
Pelat, M ;
Balligand, JL .
COMMUNICATIVE CARDIAC CELL, 2005, 1047 :173-182
[6]  
Bender HS, 2004, JCT COATINGSTECH, V1, P10
[7]   NITRIC-OXIDE MEDIATES GLUTAMATE-LINKED ENHANCEMENT OF CGMP LEVELS IN THE CEREBELLUM [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (22) :9030-9033
[8]   Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J].
Brenman, JE ;
Chao, DS ;
Gee, SH ;
McGee, AW ;
Craven, SE ;
Santillano, DR ;
Wu, ZQ ;
Huang, F ;
Xia, HH ;
Peters, MF ;
Froehner, SC ;
Bredt, DS .
CELL, 1996, 84 (05) :757-767
[9]   Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy [J].
Cappola, TP ;
Kass, DA ;
Nelson, GS ;
Berger, RD ;
Rosas, GO ;
Kobeissi, ZA ;
Marbán, E ;
Hare, JM .
CIRCULATION, 2001, 104 (20) :2407-2411
[10]   An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation [J].
Chen, ZQ ;
Foster, MW ;
Zhang, J ;
Mao, L ;
Rockman, HA ;
Kawamoto, T ;
Kitagawa, K ;
Nakayama, KI ;
Hess, DT ;
Stamler, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (34) :12159-12164