High temperature mechanical spectroscopy and creep of calcium hexaluminate

被引:6
作者
Daraktchiev, M [1 ]
Schaller, R
Domínguez, C
Chevalier, J
Fantozzi, G
机构
[1] Ecole Polytech Fed Lausanne, IPMC, CH-1015 Lausanne, Switzerland
[2] Inst Natl Sci Appl, GEMPPM, UMR5510, F-69621 Villeurbanne, France
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2004年 / 370卷 / 1-2期
关键词
creep; internal friction; annealing; dislocation damping; master curve;
D O I
10.1016/j.msea.2003.03.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Samples of calcium hexaluminate (CA(6)) were studied by four-point bending creep tests and mechanical spectroscopy at temperatures between 1300 and 1600 K. By using the temperature-compensated time concept, proposed by Dorn (1954, 1956), activation enthalpies of the order of 620 kJ/mol were deduced from both the isothermal creep and the internal friction measurements. A generic curve, "master curve", is obtained by a superposition of the isothermal mechanical loss spectrum along the temperature-compensated frequency axis. The master curve is composed of two components: a high-frequency part (peak) and a low-frequency part (exponential background). Both the peak and the background decrease after performing torsional creep. Additionally, the peak shifts towards higher frequency after annealing. The high temperature mechanical loss behavior of CA(6) is discussed in terms of a dislocation model invoking anelastic and viscoplastic relaxation phenomena. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 27 条
[1]   Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites [J].
An, L ;
Chan, HM ;
Soni, KK .
JOURNAL OF MATERIALS SCIENCE, 1996, 31 (12) :3223-3229
[2]   Grain boundary: description and dynamics [J].
Benoit, W .
MECHANICAL SPECTROSCOPY Q-1 2001, 2001, 366-3 :291-305
[3]   Dislocation: description and dynamics [J].
Benoit, W .
MECHANICAL SPECTROSCOPY Q-1 2001, 2001, 366-3 :141-157
[4]   Creep behaviour of alumina, zirconia and zirconia-toughened alumina [J].
Chevalier, J ;
Olagnon, C ;
Fantozzi, G ;
Gros, H .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1997, 17 (06) :859-864
[5]   High-temperature mechanical loss behaviour of 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) [J].
Daraktchiev, M ;
Schaller, R .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 195 (02) :293-304
[6]   Thermomechanical properties and fracture mechanisms of calcium hexaluminate [J].
Domínguez, C ;
Chevalier, J ;
Torrecillas, R ;
Gremillard, L ;
Fantozzi, G .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (07) :907-917
[7]   Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate [J].
Dominguez, C ;
Torrecillas, R .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1998, 18 (09) :1373-1379
[8]   Microstructure development in calcium hexaluminate [J].
Domínguez, C ;
Chevalier, J ;
Torrecillas, R ;
Fantozzi, G .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (03) :381-387
[9]  
DOMINGUEZ C, 2000, THESIS I NAT SCI APP
[10]   High-temperature mechanical spectroscopy of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) with different amounts of intergranular phase [J].
Donzel, L ;
Conforto, E ;
Schaller, R .
ACTA MATERIALIA, 2000, 48 (03) :777-787