Solution structure of anti-HIV-1 and anti-tumor protein MAP30: Structural insights into its multiple functions

被引:69
作者
Wang, YX
Neamati, N
Jacob, J
Palmer, I
Stahl, SJ
Kaufman, JD
Huang, PL
Huang, PL
Winslow, HE
Pommier, Y
Wingfield, PT
Lee-Huang, S [1 ]
Bax, A
Torchia, DA
机构
[1] NCI, Mol Pharmacol Lab, NIH, Bethesda, MD 20892 USA
[2] Natl Inst Dent & Craniofacial Res, Mol Struct Biol Lab, NIH, Bethesda, MD 20892 USA
[3] NIAMSD, Prot Express Lab, NIH, Bethesda, MD 20892 USA
[4] Amer BioSci, New York, NY 10021 USA
[5] Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA
[6] Harvard Univ, Sch Med, Boston, MA 02114 USA
[7] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA
[8] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0092-8674(00)81529-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present the solution structure of MAP30, a plant protein with anti-HIV and anti-tumor activities. Structural analysis and subsequent biochemical assays lead to several novel discoveries. First, MAP30 acts like a DNA glycosylase/apurinic (ap) lyase, an additional activity distinct from its known RNA N-glycosidase activity toward the 28S rRNA. Glycosylase/ap lyase activity explains MAP30's apparent inhibition of the HIV-1 integrase, MAP30's ability to irreversibly relax supercoiled DNA, and may be an alternative cytotoxic pathway that contributes to MAP30's anti-HIV/anti-tumor activities. Second, two distinct, but contiguous, subsites are responsible for MAP30's glycosylase/ap lyase activity. Third, Mn2+ and Zn2+ interact with negatively charged surfaces next to the catalytic sites, facilitating DNA substrate binding instead of directly participating in catalysis.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 63 条
[1]   AN ALTERNATIVE 3D-NMR TECHNIQUE FOR CORRELATING BACKBONE N-15 WITH SIDE-CHAIN H-BETA-RESONANCES IN LARGER PROTEINS [J].
ARCHER, SJ ;
IKURA, M ;
TORCHIA, DA ;
BAX, A .
JOURNAL OF MAGNETIC RESONANCE, 1991, 95 (03) :636-641
[2]   Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: Effect on DNA, RNA and poly(A) [J].
Barbieri, L ;
Valbonesi, P ;
Bonora, E ;
Gorini, P ;
Bolognesi, A ;
Stirpe, F .
NUCLEIC ACIDS RESEARCH, 1997, 25 (03) :518-522
[3]   Polynucleotide:adenosine glycosidase activity of saporin-L1: Effect on DNA, RNA and poly(A) [J].
Barbieri, L ;
Valbonesi, P ;
Gorini, P ;
Pession, A ;
Stirpe, F .
BIOCHEMICAL JOURNAL, 1996, 319 :507-513
[4]   RIBOSOME-INACTIVATING PROTEINS FROM PLANTS [J].
BARBIERI, L ;
BATTELLI, MG ;
STIRPE, F .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1154 (3-4) :237-282
[5]   A TRYPTOPHAN-CONTAINING PEPTIDE RECOGNIZES AND CLEAVES DNA AT APURINIC SITES [J].
BEHMOARAS, T ;
TOULME, JJ ;
HELENE, C .
NATURE, 1981, 292 (5826) :858-859
[6]   A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information [J].
Clore, GM ;
Gronenborn, AM ;
Bax, A .
JOURNAL OF MAGNETIC RESONANCE, 1998, 133 (01) :216-221
[7]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[8]   The deoxyribonuclease activity attributed to ribosome-inactivating proteins is due to contamination [J].
Day, PJ ;
Lord, JM ;
Roberts, LM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (02) :540-545
[9]   Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR [J].
Garrett, DS ;
Seok, YJ ;
Liao, DI ;
Peterkofsky, A ;
Gronenborn, AM ;
Clore, GM .
BIOCHEMISTRY, 1997, 36 (09) :2517-2530
[10]  
GRZESIEK S, 1993, J BIOMOL NMR, V3, P627