Epigenetics in cancer: Targeting chromatin modifications

被引:349
作者
Ellis, Leigh [1 ]
Atadja, Peter W. [2 ]
Johnstone, Ricky W. [1 ]
机构
[1] Peter MacCallum Canc Ctr, Melbourne, Vic 3002, Australia
[2] Novartis Inst Biomed Res, Cambridge, MA USA
基金
英国医学研究理事会;
关键词
HISTONE-DEACETYLASE INHIBITORS; SMALL-MOLECULE INHIBITOR; ACUTE MYELOID-LEUKEMIA; TUMOR-SUPPRESSOR GENES; IN-VIVO ACTIVITY; DNA METHYLATION; CLASS-II; DEMETHYLATING AGENTS; CLINICAL DEVELOPMENT; THERAPEUTIC TARGETS;
D O I
10.1158/1535-7163.MCT-08-0860
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Posttranslational modifications to histones affect chromatin structure and function resulting in altered gene expression and changes in cell behavior. Aberrant gene expression and altered epigenomic patterns are major features of cancer. Epigenetic changes including histone acetylation, histone methylation, and DNA methylation are now thought to play important roles in the onset and progression of cancer in numerous tumor types. Indeed dysregulated epigenetic modifications, especially in early neoplastic development, may be just as significant as genetic mutations in driving cancer development and growth. The reversal of aberrant epigenetic changes has therefore emerged as a potential strategy for the treatment of cancer. A number of compounds targeting enzymes that regulate histone acetylation, histone methylation, and DNA methylation have been developed as epigenetic therapies, with some demonstrating efficacy in hematological malignancies and solid tumors. This review highlights the roles of epigenetic modifications to histones and DNA in tumorigenesis and emerging epigenetic therapies being developed for the treatment of cancer. [Mol Cancer Ther 2009;8(6):1409-20]
引用
收藏
页码:1409 / 1420
页数:12
相关论文
共 120 条
[1]   Cellular transformation by SV40 large T antigen: interaction with host proteins [J].
Ali, SH ;
DeCaprio, JA .
SEMINARS IN CANCER BIOLOGY, 2001, 11 (01) :15-22
[2]   The MYST family of histone acetyltransferases and their intimate links to cancer [J].
Avvakumov, N. ;
Cote, J. .
ONCOGENE, 2007, 26 (37) :5395-5407
[3]   Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins [J].
Ayton, PM ;
Cleary, ML .
ONCOGENE, 2001, 20 (40) :5695-5707
[4]   Acetylation inactivates the transcriptional repressor BCL6 [J].
Bereshchenko, OR ;
Gu, W ;
Dalla-Favera, R .
NATURE GENETICS, 2002, 32 (04) :606-613
[5]   The mammalian epigenome [J].
Bernstein, Bradley E. ;
Meissner, Alexander ;
Lander, Eric S. .
CELL, 2007, 128 (04) :669-681
[6]   Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies [J].
Bhalla, KN .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (17) :3971-3993
[7]   Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control [J].
Bhaskara, Srividya ;
Chyla, Brenda J. ;
Amann, Joseph M. ;
Knutson, Sarah K. ;
Cortez, David ;
Sun, Zu-Wen ;
Hiebert, Scott W. .
MOLECULAR CELL, 2008, 30 (01) :61-72
[8]   Isoform-selective histone deacetylase inhibitors [J].
Bieliauskas, Anton V. ;
Pflum, Mary Kay H. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (07) :1402-1413
[9]   Anticancer activities of histone deacetylase inhibitors [J].
Bolden, Jessica E. ;
Peart, Melissa J. ;
Johnstone, Ricky W. .
NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (09) :769-784
[10]   Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors [J].
Bradbury, C ;
Khanim, F ;
Hayden, R ;
Bunce, CM ;
White, DA ;
Drayson, MT ;
Craddock, C ;
Turner, BM .
LEUKEMIA, 2005, 19 (10) :1751-1759