Essential role of the right superior parietal cortex in Japanese kana mirror reading -: An fMRI study

被引:50
作者
Dong, Y
Fukuyama, H
Honda, M
Okada, T
Hanakawa, T
Nakamura, K
Nagahama, Y
Nagamine, T
Konishi, J
Shibasaki, H
机构
[1] Kyoto Univ, Grad Sch Med, Dept Brain Pathophysiol, Sakyo Ku, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Radiol & Nucl Med, Kyoto 6068507, Japan
[3] Natl Inst Physiol Sci, Dept Cerebral Res, Psychophysiol Sect, Okazaki, Aichi 444, Japan
关键词
mirror reading; Japanese kana words; right superior parietal cortex; fMRI;
D O I
10.1093/brain/123.4.790
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates responsible for Japanese kana mirror reading. Japanese kana words, arranged vertically from top to bottom, were used in the mirror reading task in 10 normal right-handed Japanese adults. Since both mirror-reversed and normally oriented kana items are read in the same (top to bottom) direction, it was possible to minimize the oculomotor effects which often occur in the process of mirror reading of alphabetical language. By using the SPM96 random effect analysis method, a significant increase in the blood oxygen level-dependent signal during mirror reading relative to normal reading was detected in multiple brain regions, including the bilateral superior occipital gyri, bilateral middle occipital gyri corresponding to Brodmann area (BA) 18/19, bilateral lingual gyri (BA 19), left inferior occipital gyrus (BA 18), left inferior temporal cortex (BA 37), bilateral fusiform gyri (BA 19), right superior parietal cortex (SPC) (BA 7), left inferior frontal gyrus (BA 44/45) and an inferior part of the left BA 6, In addition to these cortical regions, the right caudate nucleus and right cerebellum were also activated. The activation found in the right SPC and the left inferior temporal region is consistent with the hypothesis that mirror reading involves both the dorsal visuospatial and ventral object recognition pathways. In particular, a significant correlation was found between the fMRI signal change in the right SPC and the behavioural performance (error index) in the task. This may reflect increased demand on the right SPC for the spatial transformation which is required for the accurate recognition of mirror-reversed kana items. This relationship between the haemodynamic response in a specific brain area and the behavioural data provides new evidence for the essential role of the right SPC in Japanese kana mirror reading.
引用
收藏
页码:790 / 799
页数:10
相关论文
共 43 条
[1]   Neuronal activity of human caudate nucleus and prefrontal cortex in cognitive tasks [J].
Abdullaev, YG ;
Bechtereva, NP ;
Melnichuk, KV .
BEHAVIOURAL BRAIN RESEARCH, 1998, 97 (1-2) :159-177
[2]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[3]   Functional activation of the human brain during mental rotation [J].
Alivisatos, B ;
Petrides, M .
NEUROPSYCHOLOGIA, 1997, 35 (02) :111-118
[4]  
BAIZER JS, 1991, J NEUROSCI, V11, P168
[5]   RESPONSES OF CELLS IN THE TAIL OF THE CAUDATE-NUCLEUS DURING VISUAL-DISCRIMINATION LEARNING [J].
BROWN, VJ ;
DESIMONE, R ;
MISHKIN, M .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (03) :1083-1094
[6]   The functional anatomy of attention to visual motion -: A functional MRI study [J].
Büchel, C ;
Josephs, O ;
Rees, G ;
Turner, R ;
Frith, CD ;
Friston, KJ .
BRAIN, 1998, 121 :1281-1294
[7]   Graded functional activation in the visuospatial system with the amount of task demand [J].
Carpenter, PA ;
Just, MA ;
Keller, TA ;
Eddy, W ;
Thulborn, K .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1999, 11 (01) :9-24
[8]   Changes in cortical activity during mental rotation - A mapping study using functional MRI [J].
Cohen, MS ;
Kosslyn, SM ;
Breiter, HC ;
DiGirolamo, GJ ;
Thompson, WL ;
Anderson, AK ;
Bookheimer, SY ;
Rosen, BR ;
Belliveau, JW .
BRAIN, 1996, 119 :89-100
[9]   PRESERVED LEARNING AND RETENTION OF PATTERN-ANALYZING SKILL IN AMNESIA - DISSOCIATION OF KNOWING HOW AND KNOWING THAT [J].
COHEN, NJ ;
SQUIRE, LR .
SCIENCE, 1980, 210 (4466) :207-210
[10]   Mapping striate and extrastriate visual areas in human cerebral cortex [J].
DeYoe, EA ;
Carman, GJ ;
Bandettini, P ;
Glickman, S ;
Wieser, J ;
Cox, R ;
Miller, D ;
Neitz, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (06) :2382-2386