Mechanisms underlying cannabinoid inhibition of presynaptic Ca2+ influx at parallel fibre synapses of the rat cerebellum

被引:44
作者
Daniel, H [1 ]
Rancillac, A [1 ]
Crepel, F [1 ]
机构
[1] UPMC, UMR CNRS 7102, Lab Neurobiol & Pharmacol Synapse, F-75005 Paris, France
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 557卷 / 01期
关键词
D O I
10.1113/jphysiol.2004.063263
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Activation of CB1 cannabinoid receptors in the cerebellum acutely depresses excitatory synaptic transmission at parallel fibre-Purkinje cell synapses by decreasing the probability of glutamate release. This depression involves the activation of presynaptic 4-aminopyridine-sensitive K+ channels by CB1 receptors, which in turn inhibits presynaptic Ca2+ influx controlling glutamate release at these synapses. Using rat cerebellar frontal slices and fluorometric measures of presynaptic Ca2+ influx evoked by stimulation of parallel fibres with the fluorescent dye fluo-4FF, we tested whether the CB1 receptor-mediated inhibition of this influx also involves a direct inhibition of presynaptic voltage-gated calcium channels. Since various physiological effects of CB1 receptors appear to be mediated through the activation of PTX-sensitive proteins, including inhibition of adenylate cyclases, activation of mitogen-activated protein kinases (MAPK) and activation of G protein-gated inwardly rectifying K+ channels, we also studied the potential involvement of these intracellular signal transduction pathways in the cannabinoid-mediated depression of presynaptic Ca2- influx. The present study demonstrates that the molecular mechanisms underlying the CB1 inhibitory effect involve the activation of the PTX-sensitive G(i)/G(o) subclass of G proteins, independently of any direct effect on presynaptic Ca2+ channels (N, P/Q and R (SNX-482-sensitive) types) or on adenylate cyclase or MAPK activity, but do require the activation of G protein-gated inwardly rectifying (Ba2+-and tertiapin Q-sensitive) K+ channels, in addition to 4-aminopyridine-sensitive K+ channels.
引用
收藏
页码:159 / 174
页数:16
相关论文
共 61 条
[1]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[2]   Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse [J].
Azad, SC ;
Eder, M ;
Marsicano, G ;
Lutz, B ;
Zieglgänsberger, W ;
Rammes, G .
LEARNING & MEMORY, 2003, 10 (02) :116-128
[3]   ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASES BY STIMULATION OF THE CENTRAL CANNABINOID RECEPTOR CB1 [J].
BOUABOULA, M ;
POINOTCHAZEL, C ;
BOURRIE, B ;
CANAT, X ;
CALANDRA, B ;
RINALDICARMONA, M ;
LEFUR, G ;
CASELLAS, P .
BIOCHEMICAL JOURNAL, 1995, 312 :637-641
[4]   Cannabinoid receptor CB1 activates the Na+/H+ exchanger NHE-1 isoform via Gi-mediated mitogen activated protein kinase signaling transduction pathways [J].
Bouaboula, M ;
Bianchini, L ;
McKenzie, FR ;
Pouyssegur, J ;
Casellas, P .
FEBS LETTERS, 1999, 449 (01) :61-65
[5]   CANNABINOID RECEPTOR AGONISTS INHIBIT CA CURRENT IN NG108-15 NEUROBLASTOMA-CELLS VIA A PERTUSSIS TOXIN-SENSITIVE MECHANISM [J].
CAULFIELD, MP ;
BROWN, DA .
BRITISH JOURNAL OF PHARMACOLOGY, 1992, 106 (02) :231-232
[6]  
Chen CF, 1997, J NEUROSCI, V17, P8687
[7]   Role of cyclic AMP in the actions of cannabinoid receptors [J].
Childers, SR ;
Deadwyler, SA .
BIOCHEMICAL PHARMACOLOGY, 1996, 52 (06) :819-827
[8]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[9]  
Daniel H, 2001, J PHYSIOL-LONDON, V537, P793
[10]  
Derkinderen P, 2003, J NEUROSCI, V23, P2371