Performance of genetic programming to extract the trend in noisy data series

被引:30
作者
Borrelli, A.
De Falco, I.
Della Cioppa, A.
Nicodemi, M. [1 ]
Trautteur, G.
机构
[1] Univ Naples Federico II, Dept Phys Sci, Ist Nazl Fis Nucl, Naples, Italy
[2] Natl Res Council Italy, ICAR, Naples, Italy
[3] Univ Salerno, DIIIE, Nat Computat Lab, Fisciano, SA, Italy
关键词
multiobjective genetic programming; stochastic time series;
D O I
10.1016/j.physa.2006.04.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper an approach based on genetic programming for forecasting stochastic time series is outlined. To obtain a suitable test-bed some well-known time series are dressed with noise. The GP approach is endowed with a multiobjective scheme relying on statistical properties of the faced series, i.e., on their momenta. Finally, the method is applied to the MIB30 Index series. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 108
页数:5
相关论文
共 8 条
[1]   Evolving predictors for chaotic time series [J].
Angeline, PJ .
APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE, 1998, 3390 :170-180
[2]  
DUAN M, 2001, GENETIC EVOLUTIONARY, P193
[3]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16
[4]  
Iba H, 2000, IEEE C EVOL COMPUTAT, P1459, DOI 10.1109/CEC.2000.870826
[5]  
Koza J.R., 1992, GENETIC PROGRAMMING
[6]  
Steuer R., 1986, THEORY COMPUTATION A
[7]  
WEIGEND A, 1994, TIME SERIES PREICTIO
[8]  
WHITLEY D, 1995, J HEURISTICS, V1, P74