Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production

被引:40
作者
Geertman, Jan-Maarten A.
van Maris, Antonius J. A.
van Dijken, Johannes P.
Pronk, Jack T.
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Bird Engn BV, NL-3115 HG Schiedam, Netherlands
关键词
Saccharomyces cerevisiae; glycerol; cofactor; cytosolic redox metabolism; metabolic engineering; NADH dehydrogenase;
D O I
10.1016/j.ymben.2006.06.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol . (mol glucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol . (mol glucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 72 条
[1]  
Agarwal G.P., 1990, ADV BIOCHEM ENG BIOT, V41, P95
[2]  
[Anonymous], [No title captured]
[3]   The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J].
Ansell, R ;
Granath, K ;
Hohmann, S ;
Thevelein, JM ;
Adler, L .
EMBO JOURNAL, 1997, 16 (09) :2179-2187
[4]  
Ausubel F. M., 2002, SHORT PROTOCOLS MOL
[5]   THE AUXILIARY SUBSTRATE CONCEPT - AN APPROACH FOR OVERCOMING LIMITS OF MICROBIAL PERFORMANCES [J].
BABEL, W ;
BRINKMANN, U ;
MULLER, RH .
ACTA BIOTECHNOLOGICA, 1993, 13 (03) :211-242
[6]   The mitochondrial alcohol dehydrogenase adh3p is involved in a redox shuttle in Saccharomyces cerevisiae [J].
Bakker, BM ;
Bro, C ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :4730-4737
[7]   Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J].
Bakker, BM ;
Overkamp, KM ;
van Maris, AJA ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :15-37
[8]  
Borst P., 1963, Funktionelle Und Morphologische Organisation Der Zelle, P137, DOI 10.1007/978-3-642-86784-2_10
[9]   Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant [J].
Campagno, C ;
Brambilla, L ;
Capitanio, D ;
Boschi, F ;
Ranzi, BM ;
Porro, D .
YEAST, 2001, 18 (07) :663-670
[10]   Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae [J].
Cavero, S ;
Vozza, A ;
del Arco, A ;
Palmieri, L ;
Villa, A ;
Blanco, E ;
Runswick, MJ ;
Walker, JE ;
Cerdán, S ;
Palmieri, F ;
Satrústegui, J .
MOLECULAR MICROBIOLOGY, 2003, 50 (04) :1257-1269