Relativistic MHD with adaptive mesh refinement

被引:84
作者
Anderson, Matthew [1 ]
Hirschmann, Eric W.
Liebling, Steven L.
Neilsen, David
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[3] Long Isl Univ, Dept Phys, Greenvale, NY 11548 USA
关键词
D O I
10.1088/0264-9381/23/22/025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the del (.) B = 0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.
引用
收藏
页码:6503 / 6524
页数:22
相关论文
共 58 条