Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography

被引:218
作者
Derin, Yagmur [1 ]
Yilmaz, Koray K. [1 ]
机构
[1] Middle E Tech Univ, Dept Geol Engn, TR-06800 Ankara, Turkey
关键词
RAINFALL PRODUCTS; ANALYSIS TMPA; GAUGE; VALIDATION; CLIMATE;
D O I
10.1175/JHM-D-13-0191.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study evaluates the performance of four satellite-based precipitation (SBP) products over the western Black Sea region of Turkey, a region characterized by complex topography that exerts strong controls on the precipitation regime. The four SBP products include the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis version 7 experimental near-real-time product (TMPA-7RT) and post-real-time research-quality product (TMPA-7A), the Climate Prediction Center morphing technique (CMORPH), and the Multisensor Precipitation Estimate (MPE) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Evaluation is performed at various spatial (point and grid) and temporal (daily, monthly, seasonal, and annual) scales over the period 2007-11. For the grid-scale evaluation, a rain gauge-based gridded precipitation dataset was constructed using a knowledge-based system in which "physiographic descriptors" are incorporated in the precipitation estimation through an optimization framework. The results indicated that evaluated SBP products generally had difficulty in representing the precipitation gradient normal to the orography. TMPA-7RT, TMPA-7A, and MPE products underestimated precipitation along the windward region and overestimated the precipitation on the leeward region, more significantly during the cold season. The CMORPH product underestimated the precipitation on both windward and leeward regions regardless of the season. Further investigation of the datasets used in the development of these SBP products revealed that, although both infrared (IR) and microwave (MW) datasets contain potential problems, the inability of MW sensors to detect precipitation especially in the cold season was the main challenge over this region with complex topography.
引用
收藏
页码:1498 / 1516
页数:19
相关论文
共 36 条
[1]   GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation [J].
Aonashi, Kazumasa ;
Awaka, Jun ;
Hirose, Masafumi ;
Kozu, Toshikaki ;
Kubota, Takuji ;
Liu, Guosheng ;
Shige, Shoichi ;
Kida, Satoshi ;
Seto, Sinta ;
Takahashi, Nobuhiro ;
Takayabu, Yukari N. .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2009, 87A :119-136
[2]   A knowledge-based approach to the statistical mapping of climate [J].
Daly, C ;
Gibson, WP ;
Taylor, GH ;
Johnson, GL ;
Pasteris, P .
CLIMATE RESEARCH, 2002, 22 (02) :99-113
[3]   Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States [J].
Daly, Christopher ;
Halbleib, Michael ;
Smith, Joseph I. ;
Gibson, Wayne P. ;
Doggett, Matthew K. ;
Taylor, George H. ;
Curtis, Jan ;
Pasteris, Phillip P. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2008, 28 (15) :2031-2064
[4]   Guidelines for assessing the suitability of spatial climate data sets [J].
Daly, Christopher .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2006, 26 (06) :707-721
[5]   Validation of high-resolution satellite rainfall products over complex terrain [J].
Dinku, T. ;
Chidzambwa, S. ;
Ceccato, P. ;
Connor, S. J. ;
Ropelewski, C. F. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (14) :4097-4110
[6]   Validation of satellite rainfall products over East Africa's complex topography [J].
Dinku, T. ;
Ceccato, P. ;
Grover-Kopec, E. ;
Lemma, M. ;
Connor, S. J. ;
Ropelewski, C. F. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (7-8) :1503-1526
[7]  
Dinku T, 2010, SATELLITE RAINFALL APPLICATIONS FOR SURFACE HYDROLOGY, P193, DOI 10.1007/978-90-481-2915-7_11
[8]   EFFECTIVE AND EFFICIENT GLOBAL OPTIMIZATION FOR CONCEPTUAL RAINFALL-RUNOFF MODELS [J].
DUAN, QY ;
SOROOSHIAN, S ;
GUPTA, V .
WATER RESOURCES RESEARCH, 1992, 28 (04) :1015-1031
[9]   Comparison of near-real-time precipitation estimates from satellite observations and numerical models [J].
Ebert, Elizabeth E. ;
Janowiak, John E. ;
Kidd, Chris .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (01) :47-+
[10]   Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation [J].
Gebregiorgis, Abebe S. ;
Hossain, Faisal .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :704-718