Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells

被引:307
作者
Borghei, Maryam [1 ]
Laocharoen, Nikorn [1 ]
Kibena-Poldsepp, Elo [2 ]
Johansson, Leena-Sisko [1 ]
Campbell, Joseph [1 ]
Kauppinen, Esko [3 ]
Tammeveski, Kaido [2 ]
Rojas, Orlando J. [1 ,3 ]
机构
[1] Aalto Univ, Biobased Colloids & Mat & Ctr Excellence Mol Engn, Dept Bioprod & Biosyst, Espoo, Finland
[2] Univ Tartu, Inst Chem, Tartu, Estonia
[3] Aalto Univ, Dept Appl Phys, Nanomat Grp, Espoo, Finland
基金
芬兰科学院;
关键词
Nitrogen-doped carbon; Oxygen reduction reaction (ORR); Coconut shells; Electrocatalyst; Fuel cells; NITROGEN-DOPED CARBON; HIGH-SURFACE-AREA; ACTIVATED CARBON; CHEMICAL ACTIVATION; CATHODE CATALYST; NANOTUBES; PHOSPHORUS; CELLULOSE; BIOMASS; PERFORMANCE;
D O I
10.1016/j.apcatb.2016.11.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study introduces a new, environmentally-friendly method to synthesize N,P-doped porous carbon by high conversion (46% yield) of coconut shell residues for the reduction of oxygen in alkaline media. The obtained materials display an excellent electrocatalytic activity, making them suitable as cathode catalyst for alkaline fuel cells. The synthesis procedure included an efficient single-step activation with phosphoric acid to achieve high surface area (1216 m(2) g(-1)) and pore volume (1.15 cm(3) g(-1) with 72% mesopores). Urea was used as a low-cost and ecologically-sound source for nitrogen doping of the as-synthesized porous carbon. Remarkably, the biomass-derived electroactive carbon demonstrates a superior performance compared to a reference material, the state-of-the-art commercial Pt-C catalyst: (a) comparable electrocatalytic activity; (b) better tolerance to methanol crossover effects and, (c) improved long-term durability towards oxygen reduction reaction in alkaline media. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:394 / 402
页数:9
相关论文
共 65 条
[1]   Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction [J].
Alatalo, Sara-Maaria ;
Qiu, Kaipei ;
Preuss, Kathrin ;
Marinovic, Adam ;
Sevilla, Marta ;
Sillanpaa, Mika ;
Guo, Xiao ;
Titirici, Maria-Magdalena .
CARBON, 2016, 96 :622-630
[2]  
[Anonymous], 2008, PEM Fuel Cell Electrocatalysts and Catalyst Layers, DOI [10.1007/978-1-84800-936-3_2, DOI 10.1007/978-1-84800-936-3_2]
[3]   The doping of carbon nanotubes with nitrogen and their potential applications [J].
Ayala, P. ;
Arenal, R. ;
Ruemmeli, M. ;
Rubio, A. ;
Pichler, T. .
CARBON, 2010, 48 (03) :575-586
[4]  
Borghei M., 2015, AALTO U PUBLICATION
[5]   High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content [J].
Borghei, Maryam ;
Kanninen, Petri ;
Lundahl, Meri ;
Susi, Toma ;
Sainio, Jani ;
Anoshkin, Ilya ;
Nasibulin, Albert ;
Kalil, Tanja ;
Tammeveski, Kaido ;
Kauppinen, Esko ;
Ruiz, Viginia .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 158 :233-241
[6]   Transforming Hair into Heteroatom-Doped Carbon with High Surface Area [J].
Chaudhari, Kiran N. ;
Song, Min Young ;
Yu, Jong-Sung .
SMALL, 2014, 10 (13) :2625-2636
[7]   Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Gao, Huai-Ling ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5104-5111
[8]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[9]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065
[10]   Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications [J].
De, Sudipta ;
Balu, Alina Mariana ;
van der Waal, Jan C. ;
Luque, Rafael .
CHEMCATCHEM, 2015, 7 (11) :1608-1629