Modeling of visual flotation froth data

被引:28
作者
Hyötyniemi, H
Ylinen, R
机构
[1] Aalto Univ, Control Engn Lab, FIN-02015 Espoo, Finland
[2] Univ Oulu, Syst Engn Lab, FIN-90571 Oulu, Finland
关键词
sensor fusion; image analysis; feature extraction; flotation froth;
D O I
10.1016/S0967-0661(99)00187-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the principles of sensor fusion are presented. A new sparse coding method based on a generalization of the generalized Hebbian algorithm (GGHA) is presented. The algorithm is realized using a modification of the Kohonen network. The method is tested on an image analysis of flotation froth, in order to find features corresponding to the poisoning phenomenon in a flotation cell. The features found are capable of predicting the poisoning earlier than the ordinary process instrumentation. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 14 条
[1]   WHAT IS THE GOAL OF SENSORY CODING [J].
FIELD, DJ .
NEURAL COMPUTATION, 1994, 6 (04) :559-601
[2]   FORMING SPARSE REPRESENTATIONS BY LOCAL ANTI-HEBBIAN LEARNING [J].
FOLDIAK, P .
BIOLOGICAL CYBERNETICS, 1990, 64 (02) :165-170
[3]  
Haykin S., 1994, NEURAL NETWORKS COMP
[4]  
HYOTYNIEMI H, 1997, SCAI97 6 SCAND C ART, P13
[5]  
HYOTYNIEMI H, 1996, P INT C NEUR NETW JU, P1759
[6]  
HYOTYNIEMI H, 1997, MULTIMEDIA APPL IND, P115
[7]  
Kohonen T., 1995, Self-Organizing Maps
[8]   DIGITAL IMAGE-PROCESSING AS A TOOL FOR ONLINE MONITORING OF FROTH IN FLOTATION PLANTS [J].
MOOLMAN, DW ;
ALDRICH, C ;
VANDEVENTER, JSJ ;
STANGE, WW .
MINERALS ENGINEERING, 1994, 7 (09) :1149-1164
[9]  
Morrison D.F., 1990, MULTIVARIATE STAT ME, V3
[10]   On characterization of pulp and froth in cells of flotation plant [J].
Niemi, AJ ;
Ylinen, R ;
Hyotyniemi, H .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1997, 51 (1-4) :51-65