Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID -: a new feasible approach for the detection of an exposure to indoor mould fungi?

被引:60
作者
Elke, K
Begerow, J
Oppermann, H
Krämer, U
Jermann, E
Dunemann, L
机构
[1] Med Inst Umwelthyg, D-40225 Dusseldorf, Germany
[2] Hyg Inst Sachsen Anhalt, D-39104 Magdeburg, Germany
来源
JOURNAL OF ENVIRONMENTAL MONITORING | 1999年 / 1卷 / 05期
关键词
D O I
10.1039/a903034d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new, analytically valid procedure is described to assess the exposure of human beings to the so-called microbial volatile organic compounds (MVOCs) in air. The method can be used routinely for large sample numbers and is especially valuable as a basis for further research on the correlation between single MVOCs and indoor mould growth. The procedure is based on the fact that fungi produce a variety of volatile organic compounds, such as 3-methylbutan-1-ol, 3-methylbutan-2-ol, fenchone, heptan-2-one, hexan-2-one, octan-3-one, octan-3-ol, pentan-2-ol, alpha-terpineol, and thujopsene, which they emit into the indoor environment. Using diffusive samplers, these MVOCs are adsorbed onto charcoal during a sampling interval of four weeks. The described method is thus superior to existing methods which use short-term active sampling. After desorption with carbon disulfide, the MVOCs were determined by dual-column gas chromatography with flame ionization detection using the large-volume injection technique for sample introduction. The detection limits ranged between 0.15 and 0.53 mu g m(-3) within-series precision was found to range between 6.5 and 19.0%, and recovery was between 77 and 118%. The procedure has been sucessfully applied in the context of a large field study to measure the indoor MVOC exposure in children's rooms of 132 dwellings. The objective of the study was to examine the relation between indoor mould growth, the indoor MVOC exposure and the prevalence of adverse health effects. Information about mould formation has been obtained by a questionnaire and by the determination of colony forming units of mould fungi in mattress dust. With the exception of 3-methylbutan-2-ol, fenchone, nonan-2-one, octan-2-one, and thujopsene, indoor air concentrations of all MVOCs under investigation were significantly higher inside damp and mouldy dwellings. From the primary MVOCs under investigation, 3-methylbutan-1-ol, hexan-2-one, heptan-2-one, and octan-3-ol were found to be most reliable indicators for mould formation. A correlation was also found between selected MVOCs and the occurance of mould species in mattress dust. Aspergillus sp. correlated with heptan-2-one, hexan-2-one, octan-3-ol octan-3-one, and cr-terpineol, while the occurrance of Eurotium sp. was correlated with higher indoor air concentrations of 3-methylbutan-1-ol, 3-methylbutan-2-ol, heptan-2-one, hexan-2-one, octan-3-ol, and thujopsene. Children living in dwellings with elevated MVOC levels had a higher prevalence of asthma, hay fever, wheezing, and irritations of the eyes. These positive associations persisted after controlling for confounding factors such as age, sex, body-mass index, number of siblings, social status, passive smoking, type of heating, and ventilation habits. However, they were not statistically significant. This lack of significance may be a result of the small number of investigated samples.
引用
收藏
页码:445 / 452
页数:8
相关论文
共 39 条
[1]  
[Anonymous], UMWELTMED HYGIENE AR
[2]   INTERNATIONAL STUDY OF ASTHMA AND ALLERGIES IN CHILDHOOD (ISAAC) - RATIONALE AND METHODS [J].
ASHER, MI ;
KEIL, U ;
ANDERSON, HR ;
BEASLEY, R ;
CRANE, J ;
MARTINEZ, F ;
MITCHELL, EA ;
PEARCE, N ;
SIBBALD, B ;
STEWART, AW ;
STRACHAN, D ;
WEILAND, SK ;
WILLIAMS, HC .
EUROPEAN RESPIRATORY JOURNAL, 1995, 8 (03) :483-491
[3]   PASSIVE SAMPLING FOR VOLATILE ORGANIC-COMPOUNDS (VOCS) IN AIR AT ENVIRONMENTALLY RELEVANT CONCENTRATION LEVELS [J].
BEGEROW, J ;
JERMANN, E ;
KELES, T ;
RANFT, U ;
DUNEMANN, L .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1995, 351 (06) :549-554
[4]   Screening method for the determination of 28 volatile organic compounds in indoor and outdoor air at environmental concentrations using dual-column capillary gas chromatography with tandem electron-capture-flame ionization detection [J].
Begerow, J ;
Jermann, E ;
Keles, T ;
Koch, T ;
Dunemann, L .
JOURNAL OF CHROMATOGRAPHY A, 1996, 749 (1-2) :181-191
[5]  
Beguin H., 1995, Aerobiologia, V11, P3, DOI 10.1007/BF02136138
[6]   EXPOSURES TO RESPIRABLE, AIRBORNE PENICILLIUM FROM A CONTAMINATED VENTILATION SYSTEM - CLINICAL, ENVIRONMENTAL AND EPIDEMIOLOGICAL ASPECTS [J].
BERNSTEIN, RS ;
SORENSON, WG ;
GARABRANT, D ;
REAUX, C ;
TREITMAN, RD .
AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL, 1983, 44 (03) :161-169
[7]   VOLATILE PRODUCTION BY ASPERGILLUS-VERSICOLOR AS A POSSIBLE CAUSE OF ODOR IN HOUSES AFFECTED BY FUNGI [J].
BJURMAN, J ;
KRISTENSSON, J .
MYCOPATHOLOGIA, 1992, 118 (03) :173-178
[8]   Growth-phase-related production of potential volatile-organic tracer compounds by moulds on wood [J].
Bjurman, J ;
Nordstrand, E ;
Kristensson, J .
INDOOR AIR-INTERNATIONAL JOURNAL OF INDOOR AIR QUALITY AND CLIMATE, 1997, 7 (01) :2-7
[9]  
COHEN MA, 1990, J AIR WASTE MANAGE, V40, P903
[10]  
DEWEY S, 1995, ZBL HYG UMWELTMED, V197, P504