Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechopystis 6803

被引:152
作者
Thornton, LE
Ohkawa, H
Roose, JL
Kashino, Y
Keren, N
Pakrasi, HB [1 ]
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
[2] Himeji Inst Technol, Fac Sci, Harima, Hyogo 6781297, Japan
关键词
D O I
10.1105/tpc.104.023515
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism of oxygen evolution by photosystem 11 (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsic proteins are PsbO, PsbP, and PsbQ, whereas in cyanobacteria, they are PsbO, PsbV, and PsbU. Our previous proteomic analysis established the presence of a PsbQ homolog in the cyanobacterium Synechocystis 6803. The current study additionally demonstrates the presence of a PsbP homolog in cyanobacterial PSII. Both psbP and psbQ inactivation mutants exhibited reduced photoautotrophic growth as well as decreased water oxidation activity under CaCl2-depleted conditions. Moreover, purified PSII complexes from each mutant had significantly reduced activity. In cyanobacteria, one PsbQ is present per PSII complex, whereas PsbP is significantly substoichiometric. These findings indicate that both PsbP and PsbQ proteins are regulators that are necessary for the biogenesis of optimally active PSII in Synechocystis 6803. The new picture emerging from these data is that five extrinsic PSII proteins, PsbO, PsbP, PsbQ, PsbU, and PsbV, are present in cyanobacteria, two of which, PsbU and PsbV, have been lost during the evolution of green plants.
引用
收藏
页码:2164 / 2175
页数:12
相关论文
共 51 条
[1]   SIMPLE CONDITIONS FOR GROWTH OF UNICELLULAR BLUE-GREEN ALGAE ON PLATES [J].
ALLEN, MM .
JOURNAL OF PHYCOLOGY, 1968, 4 (01) :1-&
[2]   MODIFICATION OF THE CHLORIDE REQUIREMENT FOR PHOTOSYNTHETIC O-2 EVOLUTION - THE ROLE OF THE 23 KDA POLYPEPTIDE [J].
ANDERSSON, B ;
CRITCHLEY, C ;
RYRIE, IJ ;
JANSSON, C ;
LARSSON, C ;
ANDERSON, JM .
FEBS LETTERS, 1984, 168 (01) :113-117
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[4]   Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47 [J].
Bricker, TM ;
Morvant, J ;
Masri, N ;
Sutton, HM ;
Frankel, LK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1409 (01) :50-57
[5]  
BRICKER TM, 1996, OXYGENIC PHOTOSYNTHE, P137
[6]   Mutation of Phe-363 in the photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PSII-O or PSII-V in Synechocystis sp. PCC 6803 [J].
Clarke, SM ;
Eaton-Rye, JJ .
BIOCHEMISTRY, 1999, 38 (09) :2707-2715
[7]   Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane [J].
Dalbey, RE ;
Robinson, C .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (01) :17-22
[8]   Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins [J].
De Las Rivas, J ;
Balsera, M ;
Barber, J .
TRENDS IN PLANT SCIENCE, 2004, 9 (01) :18-25
[9]  
Debus RJ, 2000, MET IONS BIOL SYST, V37, P657
[10]   ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J].
Emanuelsson, O ;
Nielsen, H ;
Von Heijne, G .
PROTEIN SCIENCE, 1999, 8 (05) :978-984