Application of bacterial biocathodes in microbial fuel cells

被引:412
作者
He, Zhen [1 ]
Angenent, Largus T. [1 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
关键词
microbial fuel cell; biofuel cell; biocathode; potentiostat-poised half cell; terminal electron acceptor;
D O I
10.1002/elan.200603628
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This review addresses the development and experimental progress of biocathodes in microbial fuel cells (MFCs). Conventional MFCs consist of biological anodes and abiotic cathodes. The abiotic cathode usually requires a catalyst or an electron mediator to achieve high electron transfer, increasing the cost and lowering the operational sustainability. Such disadvantages can be overcome by biocathodes, which use microorganisms to assist cathodic reactions. Biocathodes are feasible in potentiostat-poised half cells, but only very few studies have investigated them in complete MFCs. The classification of biocathodes is based on which terminal electron acceptor is available. For aerobic biocathodes with oxygen as the terminal electron acceptor, electron mediators, such as iron and manganese, are first reduced by the cathode (abiotically) and then reoxidized by bacteria. Anaerobic biocathodes directly reduce terminal electron acceptors, such as nitrate and sulfate, by accepting electrons from a cathode electrode through microbial metabolism. Biocathodes are promising in MFCs, and we anticipate a successful application after several breakthroughs are made.
引用
收藏
页码:2009 / 2015
页数:7
相关论文
共 80 条
[1]   Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J].
Aelterman, Peter ;
Rabaey, Korneel ;
Pham, Hai The ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (10) :3388-3394
[2]   Production of bioenergy and biochemicals from industrial and agricultural wastewater [J].
Angenent, LT ;
Karim, K ;
Al-Dahhan, MH ;
Domíguez-Espinosa, R .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (09) :477-485
[3]   THE SUCROSE FUEL-CELL - EFFICIENT BIOMASS CONVERSION USING A MICROBIAL CATALYST [J].
BENNETTO, HP ;
DELANEY, GM ;
MASON, JR ;
ROLLER, SD ;
STIRLING, JL ;
THURSTON, CF .
BIOTECHNOLOGY LETTERS, 1985, 7 (10) :699-704
[4]   ANODIC REACTIONS IN MICROBIAL FUEL-CELLS [J].
BENNETTO, HP ;
STIRLING, JL ;
TANAKA, K ;
VEGA, CA .
BIOTECHNOLOGY AND BIOENGINEERING, 1983, 25 (02) :559-568
[5]  
Bennetto HP, 1990, BIOTECHNOL ED, V1, P163, DOI [DOI 10.2166/WST2011.822, 10.11316/butsuri.71.5_296]
[6]   Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm [J].
Bergel, A ;
Féron, D ;
Mollica, A .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (09) :900-904
[7]   BIOELECTROCHEMICAL ENERGY CONVERSION [J].
BERK, RS ;
CANFIELD, JH .
APPLIED MICROBIOLOGY, 1964, 12 (01) :10-&
[8]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[9]   Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (04) :2186-2189
[10]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555