Latin hypercube sampling of Gaussian random fields

被引:115
作者
Pebesma, EJ [1 ]
Heuvelink, GBM [1 ]
机构
[1] Univ Amsterdam, Fac Environm Sci, NL-1018 VZ Amsterdam, Netherlands
关键词
environmental model; geostatistical simulation; Monte Carlo; risk analysis; uncertainty analysis;
D O I
10.2307/1271347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following the method of Stein, this article shows how a Latin hypercube sample can be drawn from a Gaussian random field. In a case study the efficiency of Latin hypercube sampling is compared experimentally to that of simple random sampling. The model outputs studied are the mean and the 5- and 95-percentile of the areal fraction where point concentration of zinc in the topsoil exceeds a given threshold. The Latin hypercube sampling procedure slightly distorts the short-distance correlation, and in an artificial example, it is shown that this distortion is modest for small samples and vanishes for large samples.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1993, J AGR BIOL ENVIR ST
[2]   THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION [J].
BEVEN, K ;
BINLEY, A .
HYDROLOGICAL PROCESSES, 1992, 6 (03) :279-298
[3]  
Burrough P.A., 2000, Principles of Geographic Information Systems
[4]  
Deutsch C. V., 1992, GSLIB GEOSTATISTICAL
[5]  
GOMEZHERNANDEZ JJ, 1997, GEOSTATISTICS WOLLON, V1, P15
[6]  
GOMEZHERNANDEZ JJ, 1993, GEOSTATISTICS TROIA, V1, P85, DOI DOI 10.1007/978-94-011-1739-5-8
[7]   THE USE OF CONDITIONAL SIMULATION IN NUCLEAR-WASTE-SITE PERFORMANCE ASSESSMENT [J].
GOTWAY, CA .
TECHNOMETRICS, 1994, 36 (02) :129-141
[8]  
Heuvelink G.B.M., 1998, ERROR PROPAGATION EN
[9]   A DISTRIBUTION-FREE APPROACH TO INDUCING RANK CORRELATION AMONG INPUT VARIABLES [J].
IMAN, RL ;
CONOVER, WJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (03) :311-334
[10]  
Johnson M. E., 1987, MULTIVARIATE STAT SI