On the quantification of entanglement in infinite-dimensional quantum systems

被引:105
作者
Eisert, J [1 ]
Simon, C
Plenio, MB
机构
[1] Univ London Imperial Coll Sci Technol & Med, QOLS, London SW7 2BW, England
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 17期
关键词
D O I
10.1088/0305-4470/35/17/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate entanglement measures. in the infinite-dimensional regime. First, we discuss the peculiarities that may occur if the Hilbert space of a bi-partite system is infinite dimensional, most notably the fact that the set of states with-infinite entropy of entanglement is trace-norm dense in state space, implying that in any neighbourhood of every product state lies an arbitrarily strongly entangled state. The starting point for a clarification of this counterintuitive property is the observation that if one imposes the natural and physically reasonable constraint that, the mean energy is bounded from above, then the entropy of entanglement becomes a trace-norm continuous functional. The considerations will then be extended to the asymptotic limit, and we will prove some asymptotic continuity properties. We proceed by investigating the entanglement of formation and the relative entropy of entanglement in the infinite-dimensional setting. Finally, we show that the set of entangled states is still trace-norm dense in state space, even under the constraint of a finite mean energy.
引用
收藏
页码:3911 / 3923
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 1996, Matrix Analysis
[2]   Asymptotic relative entropy of entanglement -: art. no. 217902 [J].
Audenaert, K ;
Eisert, J ;
Jané, E ;
Plenio, MB ;
Virmani, S ;
De Moor, B .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :217902-1
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]  
Bohm D., 1951, Quantum Theory
[5]   MIXED STATES WITH POSITIVE WIGNER FUNCTIONS [J].
BROCKER, T ;
WERNER, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) :62-75
[6]   Cloning of continuous quantum variables [J].
Cerf, NJ ;
Ipe, A ;
Rottenberg, X .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1754-1757
[7]   Bipartite-mixed-states of infinite-dimensional systems are generically nonseparable [J].
Clifton, R ;
Halvorson, H .
PHYSICAL REVIEW A, 2000, 61 (01) :5
[8]   Nonlocal correlations are generic in infinite-dimensional bipartite systems [J].
Clifton, R ;
Halvorson, H ;
Kent, A .
PHYSICAL REVIEW A, 2000, 61 (04) :7
[9]   Continuity of relative entropy of entanglement [J].
Donald, MJ ;
Horodecki, M .
PHYSICS LETTERS A, 1999, 264 (04) :257-260
[10]  
EISERT J, 2001, QUANTPH0111016