Effective photon-photon interaction in a two-dimensional "photon fluid"

被引:24
作者
Chiao, RY [1 ]
Hansson, TH
Leinaas, JM
Viefers, S
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Stockholm Univ, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden
[3] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.69.063816
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We formulate an effective theory for the atom-mediated photon-photon interactions in a two-dimensional "photon fluid" confined in a Fabry-Perot resonator. With the atoms modeled by a collection of anharmonic Lorentz oscillators, the effective interaction is evaluated to second order in the coupling constant (the anharmonicity parameter). The interaction has the form of a renormalized two-dimensional delta-function potential, with the renormalization scale determined by the physical parameters of the system, such as density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. For realistic values of the parameters, the perturbation series has to be resummed, and the effective interaction becomes independent of the "bare" strength of the anharmonic term. The resulting expression for the nonlinear Kerr susceptibility is parametrically equal to the one found earlier for a dilute gas of two-level atoms. Using our result for the effective interaction parameter, we derive conditions for the formation of a photon fluid, both for Rydberg atoms in a microwave cavity and for alkali atoms in an optical cavity.
引用
收藏
页码:063816 / 1
页数:20
相关论文
共 33 条
[1]   BOSE-EINSTEIN CONDENSATION IN LOW-DIMENSIONAL TRAPS [J].
BAGNATO, V ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1991, 44 (11) :7439-7441
[2]   Neutral atoms prepared in Fock states of a one-dimensional harmonic potential [J].
Bouchoule, I ;
Perrin, H ;
Kuhn, A ;
Morinaga, M ;
Salomon, C .
PHYSICAL REVIEW A, 1999, 59 (01) :R8-R11
[3]  
BOYD RW, 2003, NONLINEAR OPTICS, P27
[4]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[5]   Universality of low-energy scattering in 2+1 dimensions [J].
Chadan, K ;
Khuri, NN ;
Martin, A ;
Wu, TT .
PHYSICAL REVIEW D, 1998, 58 (02)
[6]   Bogoliubov dispersion relation for a 'photon fluid': Is this a superfluid? [J].
Chiao, RY .
OPTICS COMMUNICATIONS, 2000, 179 (1-6) :157-166
[7]   Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons in a two-dimensional photon fluid [J].
Chiao, RY ;
Boyce, J .
PHYSICAL REVIEW A, 1999, 60 (05) :4114-4121
[8]  
CHIAO RY, 1993, FRONTIERS NONLINEAR, P151
[9]   Composite fermion description of rotating Bose-Einstein condensates [J].
Cooper, NR ;
Wilkin, NK .
PHYSICAL REVIEW B, 1999, 60 (24) :16279-16282
[10]   DIPHOTONS IN A NONLINEAR FABRY-PEROT RESONATOR - BOUND-STATES OF INTERACTING PHOTONS IN AN OPTICAL QUANTUM WIRE [J].
DEUTSCH, IH ;
CHIAO, RY ;
GARRISON, JC .
PHYSICAL REVIEW LETTERS, 1992, 69 (25) :3627-3630