Haar-Fisz estimation of evolutionary wavelet spectra

被引:46
作者
Fryzlewicz, Piotr [1 ]
Nason, Guy P. [1 ]
机构
[1] Univ Bristol, Bristol BS8 1TH, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
heteroscedasticity; log-transform; thresholding estimators; wavelet periodogram; wavelet spectrum;
D O I
10.1111/j.1467-9868.2006.00558.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new 'Haar-Fisz' technique for estimating the time-varying, piecewise constant local variance of a locally stationary Gaussian time series. We apply our technique to the estimation of the spectral structure in the locally stationary wavelet model. Our method combines Haar wavelets and the variance stabilizing Fisz transform. The resulting estimator is mean square consistent, rapidly computable and easy to implement, and performs well in practice. We also introduce the 'Haar-Fisz transform', a device for stabilizing the variance of scaled chi(2)-data and bringing their distribution close to Gaussianity.
引用
收藏
页码:611 / 634
页数:24
相关论文
共 37 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]  
[Anonymous], 1989, J TIME SER ANAL
[3]  
[Anonymous], 1970, DISTRIBUTIONS STAT C
[4]  
BATTAGLIA F, 1979, B UNIONE MATEMATIC B, V16, P1154
[5]  
Bosq D., 1998, Nonparametric Statistics for Stochastic Processes: Estimation and Prediction
[6]   Forecasting multifractal volatility [J].
Calvet, L ;
Fisher, A .
JOURNAL OF ECONOMETRICS, 2001, 105 (01) :27-58
[7]  
Chiann C, 1999, J NONPARAMETR STAT, V10, P1
[8]   On the Kullback-Leibler information divergence of locally stationary processes [J].
Dahlhaus, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 62 (01) :139-168
[9]  
DAHLHAUS R, 2006, IN PRESS ANN STAT
[10]   Structural break estimation for nonstationary time series models [J].
Davis, RA ;
Lee, TCM ;
Rodriguez-Yam, GA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :223-239