Coordinated regulation of endothelial nitric oxide synthase activity by phosphorylation and subcellular localization

被引:48
作者
Boo, Yong Chool
Kim, Hyo Jung
Song, Hannah
Fulton, David
Sessa, William
Jo, Hanjoong
机构
[1] Georgia Tech & Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Kyungpook Natl Univ, Sch Med, Dept Mol Med, Taegu 700422, South Korea
[3] Med Coll Georgia, Vasc Biol Ctr, Augusta, GA 30912 USA
[4] Med Coll Georgia, Dept Pharmacol, Augusta, GA 30912 USA
[5] Yale Univ, Sch Med, Boyer Ctr Mol Med, Dept Pharmacol, New Haven, CT 06536 USA
[6] Yale Univ, Sch Med, Boyer Ctr Mol Med, Program Vasc Cell Signaling & Therapeut, New Haven, CT 06536 USA
[7] Emory Univ, Sch Med, Div Cardiol, Atlanta, GA 30322 USA
关键词
eNOS mutants; membrane localization; phosphorylation; free radical;
D O I
10.1016/j.freeradbiomed.2006.03.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial nitric oxide synthase (eNOS) is regulated by multiple mechanisms including Ca2+/calmodulin binding, protein-protein interactions, phosphorylation, and subcellular locations. Emerging evidence suggests that these seemingly independent mechanisms may be closely correlated. In the present study, the interplay between membrane targeting and phosphorylation of eNOS was investigated by using various mutants designed to target specific subcellular locations or to mimic different phospho states. Phospho-mimicking mutations of wild-type eNOS at S635 and S1179 synergistically activated the enzyme. The targeted eNOS mutants to plasma membrane and Golgi complex exhibited higher NO production activities than that of a myristoylation-deficient cytosolic mutant. Phospho-mimicking mutations at S635 and S1179 rescued the activity of the cytosolic mutant and increased those of the plasma membrane- and Golgi-targeted mutants. In contrast, phospho-deficient mutations at these sites led to inactivation of eNOS. Unlike the other targeted mutants, the cytosolic eNOS mutant was unresponsive to cAMP, indicating that membrane association and phosphorylation are required for eNOS activation. These findings suggest that the coordinated interplay between phosphorylation and subcellular localization of eNOS plays an important role in regulating NO production in endothelial cells. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 47 条
[1]  
AWOLESI MA, 1994, SURGERY, V116, P439
[2]   Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells [J].
Ayajiki, K ;
Kindermann, M ;
Hecker, M ;
Fleming, I ;
Busse, R .
CIRCULATION RESEARCH, 1996, 78 (05) :750-758
[3]   Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple-serine phosphorylation sites in endothelial nitric-oxide synthase [J].
Bauer, PM ;
Fulton, D ;
Boo, YC ;
Sorescu, GP ;
Kemp, BE ;
Jo, H ;
Sessa, WC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (17) :14841-14849
[4]   Endothelial NO synthase phosphorylated at Ser635 produces no without requiring intracellular calcium increase [J].
Boo, YC ;
Sorescu, GP ;
Bauer, PM ;
Fulton, D ;
Kemp, BE ;
Harrison, DG ;
Sessa, WC ;
Jo, H .
FREE RADICAL BIOLOGY AND MEDICINE, 2003, 35 (07) :729-741
[5]   Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases [J].
Boo, YC ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 285 (03) :C499-C508
[6]   Shear stress stimulates phosphorylation of eNOS at Ser635 by a protein kinase A-dependent mechanism [J].
Boo, YC ;
Hwang, J ;
Sykes, M ;
Michell, BJ ;
Kemp, BE ;
Lum, H ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (05) :H1819-H1828
[7]   Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms -: Role of protein kinase A [J].
Boo, YC ;
Sorescu, G ;
Boyd, N ;
Shiojima, L ;
Walsh, K ;
Du, J ;
Jo, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3388-3396
[8]   Endogenous nitric oxide synthesis: Biological functions and pathophysiology [J].
Bredt, DS .
FREE RADICAL RESEARCH, 1999, 31 (06) :577-596
[9]   Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases [J].
Butt, E ;
Bernhardt, M ;
Smolenski, A ;
Kotsonis, P ;
Fröhlich, LG ;
Sickmann, A ;
Meyer, HE ;
Lohmann, SM ;
Schmidt, HHHW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5179-5187
[10]   Endothelial dysfunction: Does it matter? Is it reversible? [J].
Celermajer, DS .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1997, 30 (02) :325-333