Characterization of interfacial and mechanical properties of "green" composites with soy protein isolate and ramie fiber

被引:152
作者
Lodha, P [1 ]
Netravali, AN [1 ]
机构
[1] Cornell Univ, Fiber Sci Program, Ithaca, NY 14853 USA
关键词
D O I
10.1023/A:1016557124372
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Environment-friendly fiber-reinforced composites were fabricated using ramie fibers and soy protein isolate (SPI) and were characterized for their interfacial and mechanical properties. Ramie fibers were characterized for their tensile properties and the parameters for the Weibull distribution were estimated. Effect of glycerol content on the tensile properties of SPI was studied. Interfacial shear strength (IFSS) was determined using the microbond technique. Based on the IFSS results and fiber strength distribution, three different fiber lengths and fiber weight contents (FWC) were chosen to fabricate short fiber-reinforced composites. The results indicate that the fracture stress increases with increase in fiber length and fiber weight content. Glycerol was found to increase the fracture strain and reduce the resin fracture stress and modulus as a result of plasticization. For 10% (w/w) of 5 mm long fibers, no significant reinforcement effect was observed. In fact the short fibers acted as flaws and led to reduction in the tensile properties. On further increasing the fiber length and FWC, a significant increase in the Young's modulus and fracture stress and decrease in fracture strain was observed as the fibers started to control the tensile properties of the composites. The experimental data were compared to the theoretical predictions made using Zweben's model. The experimental results are lower than the predicted values for a variety of reasons. However, the two values get closer with increasing fiber length and FWC. (C) 2002 Kluwer Academic Publishers.
引用
收藏
页码:3657 / 3665
页数:9
相关论文
共 33 条
[1]   Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials:: agronomical aspects, morphology and mechanical properties [J].
Angelini, LG ;
Lazzeri, A ;
Levita, G ;
Fontanelli, D ;
Bozzi, C .
INDUSTRIAL CROPS AND PRODUCTS, 2000, 11 (2-3) :145-161
[2]  
Broutman LJ., 1969, ASTM STP, P27, DOI [10.1520/STP44698S, DOI 10.1520/STP44698S]
[3]  
Cheftel J.C., 1985, FOOD CHEM, P279
[4]   Effects of external loading of fiber on fiber/matrix interfacial shear strength [J].
Chou, CT ;
Gaur, U ;
Miller, B .
JOURNAL OF ADHESION, 1995, 53 (1-2) :33-44
[5]  
*CORP UN DAIML BEN, 1995, 2 DAIML BENZ GROUP, P1
[6]  
CREIGHTON TE, 1993, PROTEINS STRUCTURES, P1
[7]   COMPARISON OF METHODS FOR THE MEASUREMENT OF FIBER MATRIX ADHESION IN COMPOSITES [J].
HERRERAFRANCO, PJ ;
DRZAL, LT .
COMPOSITES, 1992, 23 (01) :2-27
[8]  
Jiang L, 1999, ANGEW MAKROMOL CHEM, V268, P13
[9]   Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites [J].
Joseph, K ;
Thomas, S ;
Pavithran, C .
POLYMER, 1996, 37 (23) :5139-5149
[10]  
Liang F, 1999, J POLYM ENG, V19, P383