The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles)

被引:137
作者
Janke, A
Arnason, U
机构
[1] Department of Genetics, Div. of Evol. Molecular Systematics, University of Lund
[2] Department of Genetics, Div. of Evol. Molecular Systematics, University of Lund, S-22362 Lund
关键词
alligator; mitochondrial DNA; molecular phylogeny; evolutionary divergences; Archosauria; haemothermia;
D O I
10.1093/oxfordjournals.molbev.a025736
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The complete mitochondrial genome of the alligator, Alligator mississippiensis, was sequenced. The size of the molecule is 16,642 nucleotides. Previously reported rearrangements of tRNAs in crocodile mitochondrial genomes were confirmed and, relative to mammals, no other deviations of gene order were observed. The analysis of protein-coding genes of the alligator showed an evolutionary rate that is roughly the same as in mammals. Thus, the evolutionary rate in the alligator is faster than that in birds as well as that in cold-blooded vertebrates. This contradicts hypotheses of constant body temperatures or high metabolic rate being correlated with elevated molecular evolutionary rates. It is commonly acknowledged that birds are the closest living relatives to crocodiles. Birds and crocodiles represent the only archosaurian suvivors of the mass extinction at the Cretaceous/Tertiary boundary. On the basis of mitchondrial protein-coding genes, the Haemothermia hypothesis, which defines birds and mammals as sister groups and thus challenges the traditional view, could be rejected. Maximum-likelihood branch length data of amino acid sequences suggest that the divergence between the avian and crocodilian lineages took place at approximate to 254 MYA.
引用
收藏
页码:1266 / 1272
页数:7
相关论文
共 56 条
[1]  
Adachi J, 1996, J MOL EVOL, V42, P459
[2]  
ADACHI J, 1996, COMPUT SCI MONOGR, V28, P1
[3]   COMPLETE SEQUENCE OF BOVINE MITOCHONDRIAL-DNA - CONSERVED FEATURES OF THE MAMMALIAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
DEBRUIJN, MHL ;
COULSON, AR ;
EPERON, IC ;
SANGER, F ;
YOUNG, IG .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 156 (04) :683-717
[4]   A complete mitochondrial DNA molecule of the white-handed gibbon, Hylobates lar, and comparison among individual mitochondrial genes of all hominoid genera [J].
Arnason, U ;
Gullberg, A ;
Xu, XF .
HEREDITAS, 1996, 124 (02) :185-189
[5]  
ARNASON U, 1993, J MOL EVOL, V37, P312
[6]   Cytochrome b nucleotide sequences and the identification of five primary lineages of extant Cetaceans [J].
Arnason, U ;
Gullberg, A .
MOLECULAR BIOLOGY AND EVOLUTION, 1996, 13 (02) :407-417
[7]   Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and ferungulates [J].
Arnason, U ;
Gullberg, A ;
Janke, A .
MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (07) :762-768
[8]   THE COMPLETE NUCLEOTIDE-SEQUENCE OF THE MITOCHONDRIAL-DNA OF THE FIN WHALE, BALAENOPTERA-PHYSALUS [J].
ARNASON, U ;
GULLBERG, A ;
WIDEGREN, B .
JOURNAL OF MOLECULAR EVOLUTION, 1991, 33 (06) :556-568
[9]   THE COMPLETE MITOCHONDRIAL-DNA SEQUENCE OF THE HARBOR SEAL, PHOCA-VITULINA [J].
ARNASON, U ;
JOHNSSON, E .
JOURNAL OF MOLECULAR EVOLUTION, 1992, 34 (06) :493-505
[10]   Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs [J].
Arnason, U ;
Gullberg, A ;
Janke, A ;
Xu, XF .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (06) :650-661