Eccentric exercise decreases maximal insulin action in humans: Muscle and systemic effects

被引:76
作者
Asp, S
Daugaard, JR
Kristiansen, S
Kiens, B
Richter, EA
机构
[1] Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1996年 / 494卷 / 03期
关键词
D O I
10.1113/jphysiol.1996.sp021541
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Unaccustomed eccentric exercise decreases whole-body insulin action in humans. To study the effects of one-legged eccentric exercise on insulin action in muscle and systemically, the euglycaemic clamp technique combined with arterial and bilateral femoral venous catheterization was used. Seven subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake over the eccentric thigh was marginally lower when compared with the control thigh, (11.9%, 64.6 +/- 10.3 vs. 73.3 +/- 10.2 mu mol kg(-1) min(-1), P = 0.08), whereas no inter-thigh difference was observed at a submaximal insulin concentration. The glycogen concentration was lower in the eccentric thigh for all three clamp steps used (P < 0.05). The glucose transporter GLUT4 protein content was on average 39% lower (P < 0.05) in the eccentric thigh in the basal state, whereas the maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mu mol kg(-1) min(-1), P < 0.05). 4. Our data show that 2 days after unaccustomed eccentric exercise, muscle and whole-body insulin action is impaired at maximal but not submaximal concentrations. The local effect cannot account for the whole-body effect, suggesting the release of a factor which decreases insulin responsiveness systemically.
引用
收藏
页码:891 / 898
页数:8
相关论文
共 25 条
[1]   MAXIMAL PERFUSION OF SKELETAL-MUSCLE IN MAN [J].
ANDERSEN, P ;
SALTIN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 366 (SEP) :233-249
[2]   EXPRESSION OF THE MAJOR INSULIN-REGULATABLE GLUCOSE-TRANSPORTER (GLUT4) IN SKELETAL-MUSCLE OF NONINSULIN-DEPENDENT DIABETIC-PATIENTS AND HEALTHY-SUBJECTS BEFORE AND AFTER INSULIN INFUSION [J].
ANDERSEN, PH ;
LUND, S ;
VESTERGAARD, H ;
JUNKER, S ;
KAHN, BB ;
PEDERSEN, O .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1993, 77 (01) :27-32
[3]   ECCENTRIC MUSCLE DAMAGE TRANSIENTLY DECREASES RAT SKELETAL-MUSCLE GLUT-4 PROTEIN [J].
ASP, S ;
KRISTIANSEN, S ;
RICHTER, EA .
JOURNAL OF APPLIED PHYSIOLOGY, 1995, 79 (04) :1338-1345
[4]   ECCENTRIC EXERCISE DECREASES GLUCOSE-TRANSPORTER GLUT4 PROTEIN IN HUMAN SKELETAL-MUSCLE [J].
ASP, S ;
DAUGAARD, JR ;
RICHTER, EA .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 482 (03) :705-712
[5]   SUBSTRATES FOR MUSCLE GLYCOGEN-SYNTHESIS IN RECOVERY FROM INTENSE EXERCISE IN MAN [J].
BANGSBO, J ;
GOLLNICK, PD ;
GRAHAM, TE ;
SALTIN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 434 :423-440
[6]   EFFECT OF MUSCLE GLYCOGEN DEPLETION ON INVIVO INSULIN ACTION IN MAN [J].
BOGARDUS, C ;
THUILLEZ, P ;
RAVUSSIN, E ;
VASQUEZ, B ;
NARIMIGA, M ;
AZHAR, S .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 72 (05) :1605-1610
[7]   CEREBROSPINAL-FLUID ADRENALINE AND NORADRENALINE IN DEPRESSED-PATIENTS [J].
CHRISTENSEN, NJ ;
VESTERGAARD, P ;
SORENSEN, T ;
RAFAELSEN, OJ .
ACTA PSYCHIATRICA SCANDINAVICA, 1980, 61 (02) :178-182
[8]   IMPAIRED MUSCLE GLYCOGEN RESYNTHESIS AFTER ECCENTRIC EXERCISE [J].
COSTILL, DL ;
PASCOE, DD ;
FINK, WJ ;
ROBERGS, RA ;
BARR, SI ;
PEARSON, D .
JOURNAL OF APPLIED PHYSIOLOGY, 1990, 69 (01) :46-50
[9]  
DEFRONZO RA, 1979, AM J PHYSIOL, V237, pE214
[10]   GLUT-4 AND INSULIN-RECEPTOR BINDING AND KINASE-ACTIVITY IN TRAINED HUMAN MUSCLE [J].
DELA, F ;
HANDBERG, A ;
MIKINES, KJ ;
VINTEN, J ;
GALBO, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 469 :615-624