Descriptor Kalman estimators

被引:44
作者
Deng, ZL
Liu, YM
机构
[1] Heilongjiang Univ, Inst Appl Math, Harbin 150080, Peoples R China
[2] Inst China Civil Aviat, Tainjin 300300, Peoples R China
关键词
D O I
10.1080/002077299291679
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A unifying framework of steady-state Kalman filtering, smoothing and prediction for descriptor systems is presented by using the innovation analysis method in the time domain. The descriptor Kalman estimators ave presented on the basis of the autoregressive moving-average innovation model and white-noise estimators. The new algorithms of steady-state descriptor Kalman estimators gains ave given. The solution of the Riccati equation is avoided. To ensure the asymptotic stability of descriptor Kalman estimators with respect to the initial values of innovation process, formulae for selecting their initial values are given. A simulation example shows the usefulness of the proposed results.
引用
收藏
页码:1205 / 1212
页数:8
相关论文
共 15 条
[1]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[2]  
Chen C.-T., 1998, LINEAR SYSTEM THEORY
[3]   FILTERING AND LQG PROBLEMS FOR DISCRETE-TIME STOCHASTIC SINGULAR SYSTEMS [J].
DAI, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (10) :1105-1108
[4]  
DAI L, 1989, IEEE T AUTOMATIC CON, V32, P187
[5]   STATE ESTIMATION FOR A CLASS OF SINGULAR SYSTEMS [J].
DAROUACH, M ;
ZASADZINSKI, M .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (04) :517-530
[6]   STATE ESTIMATION OF STOCHASTIC SINGULAR LINEAR-SYSTEMS [J].
DAROUACH, M ;
ZASADZINSKI, M ;
MEHDI, D .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1993, 24 (02) :345-354
[7]   Optimal and self-tuning while noise estimators with applications to deconvolution and filtering problems [J].
Deng, ZL ;
Zhang, HS ;
Liu, SJ ;
Zhou, L .
AUTOMATICA, 1996, 32 (02) :199-216
[8]  
DENG ZL, 1989, MODERN TIME SERIES A
[9]  
GANTMATCHER FR, 1959, THEORY MATRICES
[10]  
Gevers M., 1978, Journal A, V19, P90