Elongated Titanate Nanostructures and Their Applications

被引:207
作者
Bavykin, Dmitry V. [1 ,2 ]
Walsh, Frank C. [1 ,2 ]
机构
[1] Univ Southampton, Electrochem Engn Lab, Mat Engn Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Engn Sci, Energy Technol Res Grp, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Layered compounds; Nanostructures; Titanium dioxide; Titanates; ELECTROCHEMICAL LITHIUM STORAGE; TITANIUM-OXIDE NANOTUBES; DOPED TIO2 NANOTUBES; PHOTOCATALYTIC ACTIVITY; CATALYTIC PERFORMANCE; THIN-FILMS; HYDROTHERMAL TREATMENT; ROOM-TEMPERATURE; ANODE MATERIAL; CALCINATION TEMPERATURE;
D O I
10.1002/ejic.200801122
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Recent advances in the synthesis, characterisation and applications of elongated titanate and TiO2 nanostructures (including nanotubes, nanofibres and nanorods) are reviewed. The physicochemical properties of nanostructures, such as high surface area, efficient ion-exchange properties, electron and proton conductivity and high aspect ratio, are described in connection with a particular application. Practical aspects of the preparation, stability and transformation of elongated titanates are considered. A critical survey of the literature is provided together with the development of prospective energy applications of elongated titanates in catalysis, photocatalysis, electrocatalysis, solar cells, fuel cells, lithium batteries and hydrogen storage. Other applications utilising the high aspect ratio of elongated nanostructures include biomedical implants, sensors, drug delivery systems and smart, tribological composite coatings. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
引用
收藏
页码:977 / 997
页数:21
相关论文
共 211 条
[1]   Advanced composite gel electrolytes prepared with titania nanotube fillers in polyethylene glycol for the solid-state dye-sensitized solar cell [J].
Akhtar, M. Shaheer ;
Chun, Ji-Min ;
Yang, O-Bong .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) :2833-2837
[2]  
Alvarez-Ramirez F, 2007, CHEM MATER, V19, P2947, DOI 10.1021/cm0621621
[3]   Electrochemical lithium storage of titania nanotubes modified with NiO nanoparticles [J].
An, L. P. ;
Gao, X. P. ;
Li, G. R. ;
Yan, T. Y. ;
Zhu, H. Y. ;
Shen, P. W. .
ELECTROCHIMICA ACTA, 2008, 53 (13) :4573-4579
[4]  
[Anonymous], 2008, Hydrogen as a Future Energy Carrier
[5]   TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :501-506
[6]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[7]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[8]   Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications [J].
Bae, Changdeuck ;
Yoo, Hyunjun ;
Kim, Sihyeong ;
Lee, Kyungeun ;
Kim, Jiyoung ;
Sung, Myung A. ;
Shin, Hyunjung .
CHEMISTRY OF MATERIALS, 2008, 20 (03) :756-767
[9]   Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates [J].
Bavykin, Dmitry V. ;
Walsh, Frank C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (40) :14644-14651
[10]   Low-temperature synthesis of titanate nanotubes in aqueous KOH [J].
Bavykin, Dmitry V. ;
Cressey, Barbara A. ;
Walsh, Frank C. .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2007, 60 (02) :95-98