Reconstitution and characterization of a new desosaminyl transferase, EryCIII, from the erythromycin biosynthetic pathway

被引:18
作者
Lee, HY
Chung, HS
Hang, C
Khosla, C [1 ]
Walsh, CT
Kahne, D
Walker, S
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[4] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1021/ja048836f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
EryCIII converts α-mycarosyl erythronolide B into erythromycin D using TDP-d-desosamine as the glycosyl donor. We report the heterologous expression, purification, in vitro reconstitution, and preliminary characterization of EryCIII. Coexpression of EryCIII with the GroEL/ES chaperone complex was found to enhance greatly the expression of soluble EryCIII protein. The enzyme was found to be highly active with a kcat greater than 100 min-1. EryCIII was quite selective for the natural nucleotide sugar donor and macrolide acceptor substrates, unlike several other antibiotic glycosyl transferases with broad specificity such as desVII, oleG2, and UrdGT2. Within detectable limits, neither 6-deoxyerythronolide B nor 10-deoxymethynolide were found to be glycosylated by EryCIII. Furthermore, TDP-d-mycaminose, which only differs from TDP-d-desosamine at the C4 position, could not be transferred to αMEB. These studies lay the groundwork for detailed structural and mechanistic analysis of an important member of the desosaminyl transferase family of enzymes. Copyright © 2004 American Chemical Society.
引用
收藏
页码:9924 / 9925
页数:2
相关论文
共 16 条
  • [1] Tight binding of deoxyribonucleotide triphosphates to human thymidine kinase 2 expressed in Escherichia coli.: Purification and partial characterization of its dimeric and tetrameric forms
    Barroso, JF
    Elholm, M
    Flatmark, T
    [J]. BIOCHEMISTRY, 2003, 42 (51) : 15158 - 15169
  • [2] Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin
    Blanco, G
    Patallo, EP
    Braña, AF
    Trefzer, A
    Bechthold, A
    Rohr, J
    Méndez, C
    Salas, JA
    [J]. CHEMISTRY & BIOLOGY, 2001, 8 (03): : 253 - 263
  • [3] Chang CW, 2000, ANGEW CHEM INT EDIT, V39, P2160, DOI 10.1002/1521-3773(20000616)39:12<2160::AID-ANIE2160>3.0.CO
  • [4] 2-E
  • [5] Interspecies complementation in Saccharopolyspora erythraea:: elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives
    Doumith, M
    Legrand, R
    Lang, C
    Salas, JA
    Raynal, MC
    [J]. MOLECULAR MICROBIOLOGY, 1999, 34 (05) : 1039 - 1048
  • [6] A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea
    Gaisser, S
    Reather, J
    Wirtz, G
    Kellenberger, L
    Staunton, JU
    Leadlay, PF
    [J]. MOLECULAR MICROBIOLOGY, 2000, 36 (02) : 391 - 401
  • [7] Analysis of seven genes from the eryAl/-eryK region of the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea
    Gaisser, S
    Bohm, GA
    Cortes, J
    Leadlay, PF
    [J]. MOLECULAR & GENERAL GENETICS, 1997, 256 (03): : 239 - 251
  • [8] Isolation of isoflavones from soy-based fermentations of the erythromycin-producing bacterium Saccharopolyspora erythraea
    Hessler, PE
    Larsen, PE
    Constantinou, AI
    Schram, KH
    Weber, JM
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 47 (04) : 398 - 404
  • [9] The C-glycosyltransferase UrdGT2 is unselective toward D- and L-configured nucleotide-bound rhodinoses
    Hoffmeister, D
    Dräger, G
    Ichinose, K
    Rohr, J
    Bechthold, A
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (16) : 4678 - 4679
  • [10] Hutchinson C R, 2001, Curr Opin Investig Drugs, V2, P1681