T7 DNA helicase: A molecular motor that processively and unidirectionally translocates along single-stranded DNA

被引:79
作者
Kim, DE
Narayan, M
Patel, SS
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
[2] Ohio State Univ, Dept Biochem, Columbus, OH 43210 USA
关键词
DNA translocation; fluorescence stopped-flow; hexameric helicase; motor protein; presteady-state kinetics;
D O I
10.1016/S0022-2836(02)00733-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA helicases are molecular motors that use the energy from NTP hydrolysis to drive the process of duplex DNA strand separation. Here, we measure the translocation and energy coupling efficiency of a replicative DNA helicase from bacteriophage T7 that is a member of a class of helicases that assembles into ring-shaped hexamers. Presteady state kinetics of DNA-stimulated dTTP hydrolysis activity of T7 helicase were measured using a real time assay as a function of ssDNA length, which provided evidence for unidirectional translocation of T7 helicase along ssDNA. Global fitting of the kinetic data provided an average translocation rate of 132 bases per second per hexamer at 18 degreesC. While translocating along ssDNA, T7 helicase hydrolyzes dTTP at a rate of 49 dTTP per second per hexamer, which indicates that the energy from hydrolysis of one dTTP drives unidirectional movement of T7 helicase along two to three bases of ssDNA. One of the features that distinguishes this ring helicase is its processivity, which was determined to be 0.99996, which indicated that T7 helicase travels on an average about 75 kb of ssDNA before dissociating. We propose that the ability of T7 helicase to trans-locate unidirectionally along ssDNA in an efficient manner plays a crucial role in DNA unwinding. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:807 / 819
页数:13
相关论文
共 35 条
[1]   A ring-opening mechanism for DNA binding in the central channel of the T7 helicase-primase protein [J].
Ahnert, P ;
Picha, KM ;
Patel, SS .
EMBO JOURNAL, 2000, 19 (13) :3418-3427
[2]   Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate [J].
Ahnert, P ;
Patel, SS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32267-32273
[3]   Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase [J].
Ali, JA ;
Lohman, TM .
SCIENCE, 1997, 275 (5298) :377-380
[4]   The ATPase reaction cycle of yeast DNA topoisomerase II -: Slow rates of ATP resynthesis and Pi release [J].
Baird, CL ;
Gordon, MS ;
Andrenyak, DM ;
Marecek, JF ;
Lindsley, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (30) :27893-27898
[5]  
BROWN WC, 1989, J BIOL CHEM, V264, P6748
[6]   Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli [J].
Brune, M ;
Hunter, JL ;
Howell, SA ;
Martin, SR ;
Hazlett, TL ;
Corrie, JET ;
Webb, MR .
BIOCHEMISTRY, 1998, 37 (29) :10370-10380
[7]   DIRECT, REAL-TIME MEASUREMENT OF RAPID INORGANIC-PHOSPHATE RELEASE USING A NOVEL FLUORESCENT-PROBE AND ITS APPLICATION TO ACTOMYOSIN SUBFRAGMENT-1 ATPASE [J].
BRUNE, M ;
HUNTER, JL ;
CORRIE, JET ;
WEBB, MR .
BIOCHEMISTRY, 1994, 33 (27) :8262-8271
[8]   Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: Measurement of step size and translocation speed [J].
Dillingham, MS ;
Wigley, DB ;
Webb, MR .
BIOCHEMISTRY, 2000, 39 (01) :205-212
[9]   BACTERIOPHAGE-T7 HELICASE-PRIMASE PROTEINS FORM RINGS AROUND SINGLE-STRANDED-DNA THAT SUGGEST A GENERAL STRUCTURE FOR HEXAMERIC HELICASES [J].
EGELMAN, EH ;
YU, X ;
WILD, R ;
HINGORANI, MM ;
PATEL, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :3869-3873
[10]  
Gueron M, 1995, METHOD ENZYMOL, V261, P383