A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7

被引:54
作者
Angelova, K
Fanelli, F
Puett, D
机构
[1] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[2] Univ Modena, Dept Chem, I-41100 Modena, Italy
关键词
D O I
10.1074/jbc.M203272200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many naturally occurring and engineered mutations lead to constitutive activation of the G protein-coupled lutropin receptor (LHR), some of which also result in reduced ligand responsiveness. To elucidate the nature of interhelical interactions in this heptahelical receptor and changes thereof accompanying activation, we have utilized site-directed mutagenesis on transmembrane helices 6 and 7 of rat LHR to prepare and characterize a number of single, double, and triple mutants. The potent constitutively activating mutants, D556(6.44)H and D556(6.44)Q, were combined with weaker activating mutants, N593(7.45)R and N597(7.49)Q, and the loss-of-responsiveness mutant, N593(7.45)A. The engineered mutants have also been simulated using a new receptor model based on the crystal structure of rhodopsin. The results suggest that constitutive LHR activation by mutations at Asp-556(6.44) is triggered by the breakage or weakening of the interaction found in the wild type receptor between Asp-556(6.44) and Asn-593(7.45). Whereas this perturbation is unique to the activating mutations at Asp-556(6.44), common features to all of the most active LHR mutants are the breakage of the charge-reinforced H-bonding interaction between Arg-442(3.50) and Asp-542(6.30) and the increase in solvent accessibility of the cytosolic extensions of helices 3 and 6, which probably participate in the receptor-G protein interface. Asn-593(7.45) and Asn-597(7.49) also seem to be necessary for the high constitutive activities of D556(6.44)H and D556(6.44)Q and for full ligand responsiveness. The new theoretical model provides a foundation for further experimental work on the molecular mechanism(s) of receptor activation.
引用
收藏
页码:32202 / 32213
页数:12
相关论文
共 47 条
[1]   Functional role of transmembrane helix 7 in the activation of the heptahelical lutropin receptor [J].
Angelova, K ;
Narayan, P ;
Simon, JP ;
Puett, D .
MOLECULAR ENDOCRINOLOGY, 2000, 14 (04) :459-471
[2]   An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors [J].
Baldwin, JM ;
Schertler, GFX ;
Unger, VM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :144-164
[3]   THE PROBABLE ARRANGEMENT OF THE HELICES IN G-PROTEIN-COUPLED RECEPTORS [J].
BALDWIN, JM .
EMBO JOURNAL, 1993, 12 (04) :1693-1703
[4]  
Ballesteros J.A., 1995, Methods in Neurosciences, V25, P366, DOI [DOI 10.1016/S1043-9471(05)80049-7, 10.1016/S1043-9471(05)80049-7]
[5]   Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6 [J].
Ballesteros, JA ;
Jensen, AD ;
Liapakis, G ;
Rasmussen, SGF ;
Shi, L ;
Gether, U ;
Javitch, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29171-29177
[6]   Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone chorionic gonadotropin receptor by site-directed mutagenesis and modeling [J].
Bhowmick, N ;
Huang, JN ;
Puett, D ;
Isaacs, NW ;
Lapthorn, AJ .
MOLECULAR ENDOCRINOLOGY, 1996, 10 (09) :1147-1159
[7]   AMINO-TERMINAL LEUCINE-RICH REPEATS IN GONADOTROPIN RECEPTORS DETERMINE HORMONE SELECTIVITY [J].
BRAUN, T ;
SCHOFIELD, PR ;
SPRENGEL, R .
EMBO JOURNAL, 1991, 10 (07) :1885-1890
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   Molecular genetic, biochemical, and clinical implications of gonadotropin receptor mutations [J].
Chan, WY .
MOLECULAR GENETICS AND METABOLISM, 1998, 63 (02) :75-84
[10]   Phe310 in transmembrane VI of the α1B-adrenergic receptor is a key switch residue involved in activation and catecholamine ring aromatic bonding [J].
Chen, SH ;
Xu, M ;
Lin, F ;
Lee, D ;
Riek, P ;
Graham, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16320-16330