Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine-phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons

被引:124
作者
Yamada, M [1 ]
Ohnishi, H [1 ]
Sano, S [1 ]
Nakatani, A [1 ]
Ikeuchi, T [1 ]
Hatanaka, H [1 ]
机构
[1] MITSUBISHI KASEI INST LIFE SCI, MACHIDA, TOKYO 194, JAPAN
关键词
D O I
10.1074/jbc.272.48.30334
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, promotes differentiation and survival of various types of neurons in the central nervous system. BDNF binds to and activates the tyrosine kinase receptor, TrkB, initiating intracellular signaling and exerting its effects. Phosphatidylinositol 3-kinase (PI3-K), which has been implicated in promotion of neuronal survival by neurotrophic factors, is a component in the signaling pathway of BDNF. We examined how BDNF activates PI3-K in cultured cerebral cortical neurons. We found that insulin receptor substrate (IRS)-1 and -2 are involved in the BDNF signaling pathway that activates PI3-K, IRS-I and -2 were tyrosine-phosphorylated and bound to PI3-K in response to BDNF, This BDNF-stimulated signaling via IRS-I and -2 was inhibited by K-252a, an inhibitor of Trk tyrosine kinase, In addition, signaling via IRS-1 and -2 was markedly sustained as well as the BDNF-induced tyrosine phosphorylation of TrkB. On the other hand, we observed no association of PI3-K with TrkB in response to BDNF, These results indicate that the activation of TrkB by BDNF induces the activation of PI3-K via IRS-1 and -2 rather than by a direct interaction of TrkB with PI3-K in cultured cortical neurons.
引用
收藏
页码:30334 / 30339
页数:6
相关论文
共 64 条
[1]   The survival of striatal cholinergic neurons cultured from postnatal 2-week-old rats is promoted by neurotrophins [J].
Abiru, Y ;
Nishio, C ;
Hatanaka, H .
DEVELOPMENTAL BRAIN RESEARCH, 1996, 91 (02) :260-267
[2]   Brain-derived neurotrophic factor blocks long-term depression in rat visual cortex [J].
Akaneya, Y ;
Tsumoto, T ;
Hatanaka, H .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (06) :4198-4201
[3]   GROWTH-HORMONE, INTERFERON-GAMMA, AND LEUKEMIA INHIBITORY FACTOR PROMOTED TYROSYL PHOSPHORYLATION OF INSULIN-RECEPTOR SUBSTRATE-1 [J].
ARGETSINGER, LS ;
HSU, GW ;
MYERS, MG ;
BILLESTRUP, N ;
WHITE, MF ;
CARTERSU, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14685-14692
[4]   Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling [J].
Argetsinger, LS ;
Norstedt, G ;
Billestrup, N ;
White, MF ;
CarterSu, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :29415-29421
[5]   PHOSPHATIDYLINOSITOL 3'-KINASE IS ACTIVATED BY ASSOCIATION WITH IRS-1 DURING INSULIN STIMULATION [J].
BACKER, JM ;
MYERS, MG ;
SHOELSON, SE ;
CHIN, DJ ;
SUN, XJ ;
MIRALPEIX, M ;
HU, P ;
MARGOLIS, B ;
SKOLNIK, EY ;
SCHLESSINGER, J ;
WHITE, MF .
EMBO JOURNAL, 1992, 11 (09) :3469-3479
[6]   NEUROTROPHIC FACTORS AND THEIR RECEPTORS [J].
BARBACID, M .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (02) :148-155
[7]   NERVE GROWTH FACTOR - PURIFICATION AS A 30,000-MOLECULAR-WEIGHT PROTEIN [J].
BOCCHINI, V ;
ANGELETTI, PU .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1969, 64 (02) :787-+
[8]  
BOTHWELL M, 1995, ANNU REV NEUROSCI, V18, P223, DOI 10.1146/annurev.ne.18.030195.001255
[9]  
CARPENTER CL, 1993, J BIOL CHEM, V268, P9478
[10]  
CHEN DI, 1995, MOL CELL BIOL, V15, P4711