Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp A11-2

被引:77
作者
Ishii, Y [1 ]
Konishi, J [1 ]
Okada, H [1 ]
Hirasawa, K [1 ]
Onaka, T [1 ]
Suzuki, M [1 ]
机构
[1] Petr Energy Ctr, Adv Technol & Res Inst, Biorefining Proc Lab, Shizuoka 4240037, Japan
关键词
D O I
10.1006/bbrc.2000.2370
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Paenibacillus A11-2 can efficiently cleave two carbon-sulfur bonds in dibenzothiophene (DBT) and alkyl DBTs, which are refractory by conventional petroleum hydrodesulfurization, to remove sulfur atom at high temperatures. An 8.7-kb DNA fragment containing the genes for the DBT desulfurizing enzymes of A11-2 was cloned in Escherichia coli and characterized. Heterologous expression analysis of the deletion mutants identified three open reading frames that were required for the desulfurization of DBT to a-hydroxybiphenyl (2-HBP). The three genes were designated tdsA, tdsB, and tdsC (for thermophilic desulfurization). Both the nucleotide sequences and the deduced amino acid sequences show significant homology to dszABC genes of Rhodococcus sp. IGTS8, but there are several local differences between them. Subclone analysis revealed that the product of tdsC oxidized DBT to DBT-5,5'-dioxide via DBT-5-oxide, the product of tdsA converts DBT-5,5'-dioxide to 2-(2-hydroxyphenyl) benzene sulfinate, and the product of tdsB converts 2-(2-hydroxyphenyl)benzene sulfinate to 2-HBP. Cell-free extracts of a recombinant E. coli harboring all the three desulfurization genes converted DBT to 2-HBP at both 37 and 50 degrees C. In vivo and in vitro exhibition of desulfurization activity of the recombinant genes derived from a Paenibacillus indicates that an E. coli oxidoreductase can be functionally coupled with the monooxygenases of a gram-positive thermophile. (C) 2000 Academic Press.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 27 条
[1]   CLONING AND ANALYSIS OF STRUCTURAL GENES FROM STREPTOMYCES-PRISTINAESPIRALIS ENCODING ENZYMES INVOLVED IN THE CONVERSION OF PRISTINAMYCIN-IIB TO PRISTINAMYCIN-IIA (PIIA) - PIIA SYNTHASE AND NADH-RIBOFLAVIN 5'-PHOSPHATE OXIDOREDUCTASE [J].
BLANC, V ;
LAGNEAUX, D ;
DIDIER, P ;
GIL, P ;
LACROIX, P ;
CROUZET, J .
JOURNAL OF BACTERIOLOGY, 1995, 177 (18) :5206-5214
[2]   DESULFURIZATION OF DIBENZOTHIOPHENE BY BACTERIA [J].
CONSTANTI, M ;
GIRALT, J ;
BORDONS, A .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1994, 10 (05) :510-516
[3]   CHARACTERIZATION OF THE DESULFURIZATION GENES FROM RHODOCOCCUS SP STRAIN IGTS8 [J].
DENOME, SA ;
OLDFIELD, C ;
NASH, LJ ;
YOUNG, KD .
JOURNAL OF BACTERIOLOGY, 1994, 176 (21) :6707-6716
[4]  
GALLAGHER JR, 1993, FEMS MICROBIOL LETT, V107, P31, DOI 10.1111/j.1574-6968.1993.tb05999.x
[5]   Designing recombinant Pseudomonas strains to enhance biodesulfurization [J].
Gallardo, ME ;
Ferrandez, A ;
DeLorenzo, V ;
Garcia, JL ;
Diaz, E .
JOURNAL OF BACTERIOLOGY, 1997, 179 (22) :7156-7160
[6]   Molecular mechanisms of biocatalytic desulfurization of fossil fuels [J].
Gray, KA ;
Pogrebinsky, OS ;
Mrachko, GT ;
Xi, L ;
Monticello, DJ ;
Squires, CH .
NATURE BIOTECHNOLOGY, 1996, 14 (13) :1705-1709
[7]  
Hou CT, 1976, DEV IND MICROBIOL, V17, P351
[8]   SELECTIVE DESULFURIZATION OF DIBENZOTHIOPHENE BY RHODOCOCCUS-ERYTHROPOLIS D-1 [J].
IZUMI, Y ;
OHSHIRO, T ;
OGINO, H ;
HINE, Y ;
SHIMAO, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (01) :223-226
[9]  
KILBANE JJ, 1990, CHEMTECH, V20, P747
[10]   PETROLEUM DESULFURIZATION BY DESULFOVIBRIO-DESULFURICANS M6 USING ELECTROCHEMICALLY SUPPLIED REDUCING EQUIVALENT [J].
KIM, TS ;
KIM, HY ;
KIM, BH .
BIOTECHNOLOGY LETTERS, 1990, 12 (10) :757-760