On the regular variation of elliptical random vectors

被引:7
作者
Hashorva, Enkelejd
机构
[1] Univ Bern, Dept Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
[2] Allianz Suisse Insurance Co, CH-3001 Bern, Switzerland
关键词
regularly varying vectors; elliptical random vectors; Berman process; Sojourn limit theorem; asymptotics of supremum; coefficient of upper tail dependence;
D O I
10.1016/j.spl.2006.02.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let S = (S-1,...,S-d)(T), d >= 2 be a spherical random vector in R-d and let X = A(inverted perpendicular)S be an elliptical random vector with A is an element of R-dxd a non-singular matrix. Berman (1992. Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/ Cole) proved that if the random radius R-d = (Sigma(d)(i=1) S-i(2))(1/2) regularly varying with index alpha > 0 then S and S-i, 1 <= i <= d are regularly varying with index alpha. In this paper we derive several new equivalent conditions for the regular variation of X. As a by-product we obtain two asymptotic results concerning the sojourn and supremum of Berman processes. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1427 / 1434
页数:8
相关论文
共 19 条
[1]  
Basrak B, 2002, ANN APPL PROBAB, V12, P908
[2]  
Berman M.S., 1992, SOJOURNS EXTREMES ST
[3]  
Bingham N. H., 1987, Regular Variation
[4]   ON SOME LIMIT THEOREMS SIMILAR TO ARC-SIN LAW [J].
BREIMAN, L .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (02) :323-&
[5]   ON THE THEORY OF ELLIPTICALLY CONTOURED DISTRIBUTIONS [J].
CAMBANIS, S ;
HUANG, S ;
SIMONS, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (03) :368-385
[6]  
de Haan, 1970, REGULAR VARIATION IT
[7]  
FALK M, 2004, DMV SEMINAR, V23
[8]  
Fang K -T., 1990, SYMMETRIC MULTIVARIA
[9]  
GELUK LJ, 1987, CWI TRACT, V40
[10]   Extremes of asymptotically spherical and elliptical random vectors [J].
Hashorva, E .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 36 (03) :285-302