Impaired expression and insulin-stimulated phosphorylation of Akt-2 in muscle of obese patients with atypical diabetes

被引:39
作者
Gosmanov, AR
Umpierrez, GE
Karabell, AH
Cuervo, R
Thomason, DB
机构
[1] Univ Tennessee, Ctr Hlth Sci, Coll Med, Dept Physiol, Memphis, TN 38163 USA
[2] Univ Tennessee, Ctr Hlth Sci, Coll Med, Dept Med, Memphis, TN 38163 USA
[3] Emory Univ, Sch Med, Dept Med, Atlanta, GA 30322 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2004年 / 287卷 / 01期
关键词
hyperglycemia; Akt-1; insulin receptor; insulin receptor substrate; glucose transporter 4;
D O I
10.1152/ajpendo.00485.2003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Although a pharmacological dose of insulin produces a dramatic increase in phosphorylation and activity of Akt isoforms 1 and 2 in mammalian skeletal muscle, few studies have examined the effect of physiological concentrations of insulin on the phosphorylation of Akt-1 and -2 in normal and diabetic tissue. This study examined the patterns of insulin-stimulated Akt isoform phosphorylation and protein expression in muscle biopsies obtained from obese patients with atypical diabetes immediately after a hyperglycemic crisis and again after near-normoglycemic remission. In obese patients with new-onset diabetes mellitus presenting with hyperglycemic crisis (plasma glucose 30.5+/-4.8 mM), in vitro stimulation of vastus lateralis muscle biopsies with 100 muU/ml (0.6 nM) insulin increased insulin receptor phosphorylation threefold and Akt-1 phosphorylation on Ser(473) twofold, whereas Akt-2 phosphorylation was not stimulated. After 10-wk intensive insulin therapy that led to near-normoglycemic remission and discontinuation of insulin therapy, both Akt-2 expression and insulin-stimulated Akt-2 Ser(474) phosphorylation doubled. Hyperglycemic crisis did not affect insulin-stimulated threonine phosphorylation of either Akt-1 or Akt-2. The decreased Akt-2 expression at presentation was accompanied by reduced GLUT4 protein expression and increased expression of enzymes counterregulatory to insulin action. Thus a physiological concentration of insulin stimulated Akt-1 and Akt-2 phosphorylation in human skeletal muscle in the absence of hyperglycemia, but Akt-2 expression and stimulation appeared to be impaired in muscle of obese patients with atypical diabetes presenting with severe hyperglycemia.
引用
收藏
页码:E8 / E15
页数:8
相关论文
共 50 条
[1]   Long-term normoglycemic remission in black newly diagnosed NIDDM subjects [J].
Banerji, MA ;
Chaiken, RL ;
Lebovitz, HE .
DIABETES, 1996, 45 (03) :337-341
[2]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[3]   Defective signaling through Akt-2 and-3 but not Akt-1 in insulin-resistant human skeletal muscle - Potential role in insulin resistance [J].
Brozinick, JT ;
Roberts, BR ;
Dohm, GL .
DIABETES, 2003, 52 (04) :935-941
[4]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[5]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[6]   Glucosamine regulation of glucose metabolism in cultured human skeletal muscle cells: Divergent effects on glucose transport/phosphorylation and glycogen synthase in non-diabetic and type 2 diabetic subjects [J].
Ciaraldi, TP ;
Carter, L ;
Nikoulina, S ;
Mudaliar, S ;
McClain, DA ;
Henry, RR .
ENDOCRINOLOGY, 1999, 140 (09) :3971-3980
[7]   The Tenth Datta Lecture - PDK1, one of the missing links in insulin signal transduction? [J].
Cohen, P ;
Alessi, DR ;
Cross, DAE .
FEBS LETTERS, 1997, 410 (01) :3-10
[8]   Protein kinase C modulates insulin action in human skeletal muscle [J].
Cortright, RN ;
Azevedo, JL ;
Zhou, Q ;
Sinha, M ;
Pories, WJ ;
Itani, SI ;
Dohm, GL .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 278 (03) :E553-E562
[9]   Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? [J].
Evans, JL ;
Goldfine, ID ;
Maddux, BA ;
Grodsky, GM .
DIABETES, 2003, 52 (01) :1-8
[10]   RESTORATION OF INSULIN RESPONSIVENESS IN SKELETAL-MUSCLE OF MORBIDLY OBESE PATIENTS AFTER WEIGHT-LOSS - EFFECT ON MUSCLE GLUCOSE-TRANSPORT AND GLUCOSE TRANSPORTER GLUT4 [J].
FRIEDMAN, JE ;
DOHM, GL ;
LEGGETTFRAZIER, N ;
ELTON, CW ;
TAPSCOTT, EB ;
PORIES, WP ;
CARO, JF .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 89 (02) :701-705