Total variation in discrete multisymplectic field theory and multisymplectic-energy-momentum integrators

被引:21
作者
Chen, JB [1 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
discrete multisymplectic field theory; multisymplectic-energy-momentum integrators; total variation calculus;
D O I
10.1023/A:1020269203008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A total variation calculus in discrete multisymplectic field theory is developed in this Letter. Using this discrete total variation calculus, we obtain multisymplectic-energy-momentum integrators. The multisymplectic discretization for the nonlinear Schrodinger equation is also presented.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 16 条
[1]  
[Anonymous], FUNK ANAL PRILOZHEN
[3]   Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry [J].
Bridges, TJ ;
Derks, G .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1987) :2427-2469
[4]  
CHEN JB, HEPTH0109178
[5]  
Garcia P L, 1973, Symp. Math, V14, P219
[6]  
GUO HY, HEPTH0106001
[7]   Symplectic-energy-momentum preserving variational integrators [J].
Kane, C ;
Marsden, JE ;
Ortiz, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) :3353-3371
[8]  
Kijowski J., 1979, A symplectic framework for field theories
[9]   DIFFERENCE-EQUATIONS AND CONSERVATION-LAWS [J].
LEE, TD .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :843-860
[10]   CAN TIME BE A DISCRETE DYNAMICAL VARIABLE [J].
LEE, TD .
PHYSICS LETTERS B, 1983, 122 (3-4) :217-220