The composition of projections onto closed convex sets in Hilbert space is asymptotically regular

被引:29
作者
Bauschke, HH [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
D O I
10.1090/S0002-9939-02-06528-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The composition of finitely many projections onto closed convex sets in Hilbert space arises naturally in the area of projection algorithms. We show that this composition is asymptotically regular, thus proving the so-called zero displacement conjecture of Bauschke, Borwein and Lewis. The proof relies on a rich mix of results from monotone operator theory, fixed point theory, and convex analysis.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1993, CONVEX FUNCTIONS
[2]  
Bauschke H. H., 1996, THESIS
[3]   Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators [J].
Bauschke, HH ;
Borwein, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (01) :1-20
[4]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]  
BAUSCHKE HH, 1997, RECENT DEV OPTIMIZAT, P1
[6]  
Bregman L. M., 1965, SOV MATH DOKL, V6, P688
[7]   IMAGE OF SUM OF MONOTONE OPERATORS AND APPLICATIONS [J].
BREZIS, H ;
HARAUX, A .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 23 (02) :165-186
[8]   SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES [J].
BROWDER, FE ;
PETRYSHYN, WV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :571-+
[9]  
Bruck RE, 1977, HOUSTON J MATH, V3, P459
[10]  
De Pierro A. R., 2001, INHERENTLY PARALLEL, P187