Polymer blends and composites from renewable resources

被引:1516
作者
Yu, Long [1 ]
Dean, Katherine
Li, Lin
机构
[1] CSIRO, CMIT, Melbourne, Vic 3169, Australia
[2] S China Univ Technol, Sch Food & Light Ind Engn, Ctr Polymer Renewable Resources, Guangzhou, Peoples R China
关键词
polymer; blend; composite; renewable resource; biodegradable;
D O I
10.1016/j.progpolymsci.2006.03.002
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This article reviews recent advances in polymer blends and composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, or to offset the high price of synthetic biodegradable polymers, various blends and composites have been developed over the last decade. The progress of blends from three kinds of polymers from renewable resources-(1) natural polymers, such as starch, protein and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid; and (3) polymers from microbial fermentation, such as polyhydroxybutyrate-are described with an emphasis on potential applications. The hydrophilic character of natural polymers has contributed to the successful development of environmentally friendly composites, as most natural fibers and nanoclays are also hydrophilic in nature. Compatibilizers and the technology of reactive extrusion are used to improve the interfacial adhesion between natural and synthetic polymers. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:576 / 602
页数:27
相关论文
共 161 条
[1]  
ALBERTSSON AC, 2002, ADV POLYM SCI, V157
[2]   Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites [J].
Alvarez, VA ;
Vázquez, A .
POLYMER DEGRADATION AND STABILITY, 2004, 84 (01) :13-21
[3]   Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites [J].
Alvarez, VA ;
Fraga, AN ;
Vázquez, A .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 91 (06) :4007-4016
[4]  
[Anonymous], 1981, MULTIPHASE FLOW POLY
[5]  
[Anonymous], 1996, Biomaterials Science: An Introduction to Materials in Medicine
[6]   Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch [J].
Arvanitoyannis, I ;
Biliaderis, CG .
CARBOHYDRATE POLYMERS, 1999, 38 (01) :47-58
[7]   Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties [J].
Arvanitoyannis, IS ;
Nakayama, A ;
Aiba, S .
CARBOHYDRATE POLYMERS, 1998, 37 (04) :371-382
[8]   An overview of polylactides as packaging materials [J].
Auras, R ;
Harte, B ;
Selke, S .
MACROMOLECULAR BIOSCIENCE, 2004, 4 (09) :835-864
[9]   Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour [J].
Avella, M ;
Rota, GL ;
Martuscelli, E ;
Raimo, M ;
Sadocco, P ;
Elegir, G ;
Riva, R .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (04) :829-836
[10]   Plasticized starch-cellulose interactions in polysaccharide composites [J].
Avérous, L ;
Fringant, C ;
Moro, L .
POLYMER, 2001, 42 (15) :6565-6572