SDBD plasma actuator with nanosecond pulse-periodic discharge

被引:253
作者
Starikovskii, A. Yu [1 ,2 ]
Nikipelov, A. A. [1 ,3 ]
Nudnova, M. M. [1 ]
Roupassov, D. V. [1 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Drexel Univ, Philadelphia, PA 19104 USA
[3] NEQLab Res BV, NL-2625 GZ Delft, Netherlands
关键词
HIGH-VOLTAGE; AIR;
D O I
10.1088/0963-0252/18/3/034015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents a detailed explanation of the physical mechanism of the nanosecond pulsed surface dielectric barrier discharge (SDBD) effect on the flow. Actuator-induced gas velocities show near-zero values for nanosecond pulses. The measurements performed show overheating in the discharge region on fast (tau similar or equal to 1 mu s) thermalization of the plasma input energy. The mean values of such heating of the plasma layer can reach 70 K, 200K and even 400K for 7 ns, 12 ns and 50 ns pulse durations, respectively. The emerging shock wave together with the secondary vortex flows disturbs the main flow. The resulting pulsed-periodic disturbance causes an efficient transversal momentum transfer into the boundary layer and further flow attachment to the airfoil surface. Thus, for periodic pulsed nanosecond dielectric barrier discharge, the main mechanism of impact is the energy transfer and heating of the near-surface gas layer. The following pulse-periodic vortex movement stimulates redistribution of the main flow momentum.
引用
收藏
页数:17
相关论文
共 15 条
[1]   Study of the oxidation of alkanes in their mixtures with oxygen and air under the action of a pulsed volume nanosecond discharge [J].
Anikin, NB ;
Starikovskaia, SM ;
Starikovskii, AY .
PLASMA PHYSICS REPORTS, 2004, 30 (12) :1028-1042
[2]  
BERDYSHEV AV, 1988, TVT, V26, P661
[3]   Plasmas in high speed aerodynamics [J].
Bletzinger, P ;
Ganguly, BN ;
Van Wie, D ;
Garscadden, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (04) :R33-R57
[4]  
Laux C. O., 2002, VONKARMAN I LECT SER
[5]   Hydrodynamical simulation of the electric wind generated by successive streamers in a point-to-plane reactor [J].
Loiseau, JF ;
Batina, J ;
Noël, F ;
Peyrous, R .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (10) :1020-1031
[6]   Airflow control by non-thermal plasma actuators [J].
Moreau, Eric .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (03) :605-636
[7]  
OPAITS DF, 2005, 43 AIAA AER SCI M EX
[8]   Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage [J].
Pancheshnyi, SV ;
Starikovskii, AY .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (21) :2683-2691
[9]  
Raizer Y. P., 1997, Gas Discharge Physics
[10]   Maximizing ion-driven gas flows [J].
Rickard, Matthew ;
Dunn-Rankin, Derek ;
Weinberg, Felix ;
Carleton, Fred .
JOURNAL OF ELECTROSTATICS, 2006, 64 (06) :368-376