Role of loop bundle hydrogen bonds in the maturation and activity of (pro) caspase-3

被引:55
作者
Feeney, Brett [1 ]
Pop, Cristina [1 ]
Swartz, Paul [1 ]
Mattos, Carla [1 ]
Clark, A. Clay [1 ]
机构
[1] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA
关键词
D O I
10.1021/bi0611964
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During maturation, procaspase-3 is cleaved at D175, which resides in a linker that connects the large and small subunits. The intersubunit linker also connects two active site loops that rearrange following cleavage and, in part, form the so-called loop bundle. As a result of chain cleavage, new hydrogen bonds and van der Waals contacts form among three active site loops. The new interactions are predicted to stabilize the active site. One unresolved issue is the extent to which the loop bundle residues also stabilize the procaspase active site. We examined the effects of replacing four loop bundle residues (E167, D169, E173, and Y203) on the biochemical and structural properties of the ( pro) caspase. We show that replacing the residues affects the activity of the procaspase as well as the mature caspase, with D169A and E167A replacements having the largest effects. Replacement of D169 prevents caspase-3 autoactivation, and its cleavage at D175 no longer leads to an active enzyme. In addition, the E173A mutation, when coupled to a second mutation in the procaspase, D175A, may alter the substrate specificity of the procaspase. The mutations affected the active site environment as assessed by changes in fluorescence emission, accessibility to quencher, and cleavage by either trypsin or V8 proteases. High-resolution X-ray crystallographic structures of E167A, D173A, and Y203F caspases show that changes in the active site environment may be due to the increased flexibility of several residues in the N-terminus of the small subunit. Overall, the results show that these residues are important for stabilizing the procaspase active site as well as that of the mature caspase.
引用
收藏
页码:13249 / 13263
页数:15
相关论文
共 32 条
[1]   Reducing the peptidyl features of caspase-3 inhibitors: A structural analysis [J].
Becker, JW ;
Rotonda, J ;
Soisson, SM ;
Aspiotis, R ;
Bayly, C ;
Francoeur, S ;
Gallant, M ;
Garcia-Calvo, M ;
Giroux, A ;
Grimm, E ;
Han, YX ;
McKay, D ;
Nicholson, DW ;
Peterson, E ;
Renaud, J ;
Roy, S ;
Thornberry, N ;
Zamboni, R .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (10) :2466-2474
[2]   The three-dimensional structure of caspase-8:: an initiator enzyme in apoptosis [J].
Blanchard, H ;
Kodandapani, L ;
Mittl, PRE ;
Di Marco, S ;
Krebs, JF ;
Wu, JC ;
Tomaselli, KJ ;
Grütter, MG .
STRUCTURE, 1999, 7 (09) :1125-1133
[3]   A unified model for apical caspase activation [J].
Boatright, KM ;
Renatus, M ;
Scott, FL ;
Sperandio, S ;
Shin, H ;
Pedersen, IM ;
Ricci, JE ;
Edris, WA ;
Sutherlin, DP ;
Green, DR ;
Salvesen, GS .
MOLECULAR CELL, 2003, 11 (02) :529-541
[4]  
Bose K, 2005, PROTEIN SCI, V14, P24
[5]   An uncleavable procaspase-3 mutant has a lower catalytic efficiency but an active site similar to that of mature caspase-3 [J].
Bose, K ;
Pop, C ;
Feeney, B ;
Clark, AC .
BIOCHEMISTRY, 2003, 42 (42) :12298-12310
[6]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[7]   Caspase activation involves the formation of the aposome, a large (∼700 kDa) caspase-activating complex [J].
Cain, K ;
Brown, DG ;
Langlais, C ;
Cohen, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22686-22692
[8]   Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding [J].
Chai, JJ ;
Wu, Q ;
Shiozaki, E ;
Srinivasula, SM ;
Alnemri, ES ;
Shi, YG .
CELL, 2001, 107 (03) :399-407
[9]   Structural basis of caspase-7 inhibition by XIAP [J].
Chai, JJ ;
Shiozaki, E ;
Srinivasula, SM ;
Wu, Q ;
Dataa, P ;
Alnemri, ES ;
Shi, YG .
CELL, 2001, 104 (05) :769-780
[10]   Insights into the regulatory mechanism for caspase-8 activation [J].
Donepudi, M ;
Mac Sweeney, A ;
Briand, C ;
Grütter, MG .
MOLECULAR CELL, 2003, 11 (02) :543-549