Effect of Cooling Rates on Phase Separation in 0.5Li2MnO3•0.5LiCoO2 Electrode Materials for Li-Ion Batteries

被引:62
作者
Long, Brandon R. [1 ]
Croy, Jason R. [1 ]
Dogan, Fulya [1 ]
Suchomel, Matthew R. [2 ]
Key, Baris [1 ]
Wen, Jianguo [3 ]
Miller, Dean J. [3 ]
Thackeray, Michael M. [1 ]
Balasubramanian, Mahalingam [2 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA
关键词
X-RAY-ABSORPTION; NICKEL MANGANESE OXIDES; LOCAL-STRUCTURE; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LITHIUM INTERCALATION; PSEUDOTERNARY SYSTEM; ATOMIC-STRUCTURE; SOLID-SOLUTIONS; 1ST PRINCIPLES;
D O I
10.1021/cm501229t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results of a detailed structural investigation on the influence of cooling rates in the synthesis of lithium- and manganese-rich 0.5Li(2)MnO(3)center dot 0.5LiCoO(2) composite electrode materials, which are of interest for Li-ion battery applications, are presented. It is shown that a low-temperature, intermediate firing step, often employed in cathode synthesis, yields a minor secondary component representing a polydisperse distribution of lattice parameters, not found in the absence of low-temperature treatments. However, regardless of the heating and cooling conditions employed, all samples present two distinctly different local environments as evidenced by X-ray absorption fine structure spectroscopy (XAFS) and nuclear magnetic resonance (NMR) analysis. Transmission electron microscopy (TEM) data show discrete domain structures that are consistent with the XAFS and NMR findings. Furthermore, high resolution synchrotron X-ray diffraction (HR-XRD), as well as the XAFS and NMR data show no discernible differences between sample sets heated in similar fashion and subsequently cooled at different rates. The results contradict recent reports, using X-ray diffraction, that rapidly quenched samples of the same composition are true solid solutions. This apparent discrepancy is assigned, in part, to the inherent nature of conventional diffraction, which firmly elucidates the average long-range structure but does not capture the local domain microstructure of these nanocomposite materials. The combined use of HR-XRD, XAFS, NMR, and TEM data indicate that charge ordering, which is initiated at relatively low temperatures, is the dominant force that produces a nanoscale, inhomogeneous composite structure, irrespective of the cooling rate.
引用
收藏
页码:3565 / 3572
页数:8
相关论文
共 53 条
[1]   Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material [J].
Ammundsen, B ;
Paulsen, J ;
Davidson, I ;
Liu, RS ;
Shen, CH ;
Chen, JM ;
Jang, LY ;
Lee, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A431-A436
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries [J].
Balasubramanian, M ;
Sun, X ;
Yang, XQ ;
McBreen, J .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :1-8
[4]   In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material [J].
Balasubramanian, M ;
McBreen, J ;
Davidson, IJ ;
Whitfield, PS ;
Kargina, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A176-A184
[5]   Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 [J].
Bareno, J. ;
Balasubramanian, M. ;
Kang, S. H. ;
Wen, J. G. ;
Lei, C. H. ;
Pol, S. V. ;
Petrov, I. ;
Abraham, D. P. .
CHEMISTRY OF MATERIALS, 2011, 23 (08) :2039-2050
[6]   Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density [J].
Bettge, Martin ;
Li, Yan ;
Gallagher, Kevin ;
Zhu, Ye ;
Wu, Qingliu ;
Lu, Wenquan ;
Bloom, Ira ;
Abraham, Daniel P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :A2046-A2055
[7]   High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution [J].
Bréger, J ;
Jiang, M ;
Dupré, N ;
Meng, YS ;
Shao-Horn, Y ;
Ceder, G ;
Grey, CP .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) :2575-2585
[8]  
Briggs GWD, 1959, ELECTROCHIM ACTA, V1, P297
[9]   Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations -: art. no. 174103 [J].
Carlier, D ;
Ménétrier, M ;
Grey, CP ;
Delmas, C ;
Ceder, G .
PHYSICAL REVIEW B, 2003, 67 (17)
[10]   Structural and Electrochemical Characterization of (NH4)2HPO4-Treated Lithium-Rich Layered Li1.2Ni0.2Mn0.6O2 Cathodes for Lithium-Ion Batteries [J].
Cheng, Fuquan ;
Chen, Jitao ;
Zhou, Henghui ;
Manthiram, Arumugam .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1661-A1667