Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-xMx)P2S12 (M = Si, Sn)

被引:94
作者
Kato, Yuki [1 ,2 ]
Saito, Ryoko [3 ]
Sakano, Mitsuru [3 ]
Mitsui, Akio [4 ]
Hirayama, Masaaki [2 ]
Kanno, Ryoji [2 ]
机构
[1] Toyota Motor Co Ltd, Battery Res Div, Higashifuji Tech Ctr, Shizuoka 4101193, Japan
[2] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Chem, Yokohama, Kanagawa 2268502, Japan
[3] Toyota Motor Co Ltd, Adv Mat Engn Div, Higashifuji Tech Ctr, Shizuoka 4101193, Japan
[4] Toyota Motor Co Ltd, Mat Engn Management Div, Mat Anal Dept, Shizuoka 4101193, Japan
关键词
All-solid-state battery; Lithium ionic conductor; Li10GeP2S12; LGPS; Solid solution; SUPERIONIC CONDUCTOR; LI10GEP2S12; BATTERIES; SYSTEM;
D O I
10.1016/j.jpowsour.2014.07.159
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mixed cation system, Li-10(Ge1-xMx)P2S12 (M = Si, Sn), was synthesized and the ionic conductivities of the resulting solid solutions were determined. The Si-Ge and Ge-Sn systems provided single phase solid solutions for the composition 0 <= x <= 1.0 and 0 <= x <= 1.0 in Li-10(Ge1-xSix)P2S12 and Li-10(Ge1-xSnx)P2S12, respectively. The lattice size gradually increased from Si to Sn through the Ge systems, reflecting the ionic size of these elements. On the other hand, conductivity did not follow the increase in lattice volume. Conductivity increased in the Si to Ge system, with the maximum conductivity value of 8.6 x 10(-3) S cm(-1) provided by the compressed powder with the composition Lt(10)Ge(0.95)Si(0.05)P(2)S(12), which is close to the original Li10GeP2S12 (LGPS) composition. The conductivity decreased with increasing Sn content, indicating that lattice volume is not the only parameter that affects ionic conduction in this structure. The relationship between conductivity and lattice volume is discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 64
页数:5
相关论文
共 19 条
[1]   Structural requirements for fast lithium ion migration in Li10GeP2S12 [J].
Adams, Stefan ;
Rao, R. Prasada .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) :7687-7691
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[4]   Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 [J].
Homma, Kenji ;
Yonemura, Masao ;
Kobayashi, Takeshi ;
Nagao, Miki ;
Hirayama, Masaaki ;
Kanno, Ryoji .
SOLID STATE IONICS, 2011, 182 (01) :53-58
[5]  
Hori S., 2014, FARADAY DISCUS UNPUB
[6]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[7]   Three-dimensional visualization in powder diffraction [J].
Izumi, Fujio ;
Momma, Koichi .
APPLIED CRYSTALLOGRAPHY XX, 2007, 130 :15-20
[8]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[9]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[10]   Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 [J].
Kato, Yuki ;
Kawamoto, Koji ;
Kanno, Ryoji ;
Hirayama, Masaaki .
ELECTROCHEMISTRY, 2012, 80 (10) :749-751