Nonequilibrium melting and crystallization of a model Lennard-Jones system

被引:174
作者
Luo, SN [1 ]
Strachan, A [1 ]
Swift, DC [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1755655
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonequilibrium melting and crystallization of a model Lennard-Jones system were investigated with molecular dynamics simulations to quantify the maximum superheating/supercooling at fixed pressure, and over-pressurization/over-depressurization at fixed temperature. The temperature and pressure hystereses were found to be equivalent with regard to the Gibbs free energy barrier for nucleation of liquid or solid. These results place upper bounds on hysteretic effects of solidification and melting in high heating- and strain-rate experiments such as shock wave loading and release. The authors also demonstrate that the equilibrium melting temperature at a given pressure can be obtained directly from temperatures at the maximum superheating and supercooling on the temperature hysteresis; this approach, called the hysteresis method, is a conceptually simple and computationally inexpensive alternative to solid-liquid coexistence simulation and thermodynamic integration methods, and should be regarded as a general method. We also found that the extent of maximum superheating/supercooling is weakly pressure dependent, and the solid-liquid interfacial energy increases with pressure. The Lindemann fractional root-mean-squared displacement of solid and liquid at equilibrium and extreme metastable states is quantified, and is predicted to remain constant (0.14) at high pressures for solid at the equilibrium melting temperature. (C) 2004 American Institute of Physics.
引用
收藏
页码:11640 / 11649
页数:10
相关论文
共 47 条
[1]   Molecular dynamics study of the melting of nitromethane [J].
Agrawal, PM ;
Rice, BM ;
Thompson, DL .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (18) :9617-9627
[2]   THERMODYNAMIC AND STRUCTURAL-PROPERTIES OF MODEL SYSTEMS AT SOLID-FLUID COEXISTENCE .2. MELTING AND SUBLIMATION OF THE LENNARD-JONES SYSTEM [J].
AGRAWAL, R ;
KOFKE, DA .
MOLECULAR PHYSICS, 1995, 85 (01) :43-59
[3]   FLUID-PHASE EQUILIBRIA USING MOLECULAR-DYNAMICS - THE SURFACE-TENSION OF CHLORINE AND HEXANE [J].
ALEJANDRE, J ;
TILDESLEY, DJ ;
CHAPELA, GA .
MOLECULAR PHYSICS, 1995, 85 (03) :651-663
[4]   BULK SUPERHEATING OF SOLID KBR AND CSBR WITH SHOCK-WAVES [J].
BONESS, DA ;
BROWN, JM .
PHYSICAL REVIEW LETTERS, 1993, 71 (18) :2931-2934
[5]   MOLECULAR-DYNAMICS INVESTIGATION OF THE CRYSTAL FLUID INTERFACE .6. EXCESS SURFACE FREE-ENERGIES OF CRYSTAL LIQUID-SYSTEMS [J].
BROUGHTON, JQ ;
GILMER, GH .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (10) :5759-5768
[6]  
Christian JW., 1965, THEORY TRANSFORMATIO
[7]   DENSITY-FUNCTIONAL THEORY OF CRYSTAL-MELT INTERFACES [J].
CURTIN, WA .
PHYSICAL REVIEW B, 1989, 39 (10) :6775-6791
[8]   Direct calculation of the hard-sphere crystal/melt interfacial free energy [J].
Davidchack, RL ;
Laird, BB .
PHYSICAL REVIEW LETTERS, 2000, 85 (22) :4751-4754
[9]   Direct calculation of the crystal-melt interfacial free energies for continuous potentials: Application to the Lennard-Jones system [J].
Davidchack, RL ;
Laird, BB .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (16) :7651-7657
[10]  
DAVIS JP, 2003, B AM PHYS SOC, V48, P88