Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

被引:40
作者
Zhao, Gang [1 ]
Hoffmann, Holger
van Bussel, Lenny G. J. [2 ]
Enders, Andreas
Specka, Xenia [3 ]
Sosa, Carmen [4 ]
Yeluripati, Jagadeesh [5 ,20 ]
Tao, Fulu [6 ]
Constantin, Julie [7 ,8 ]
Raynal, Helene [7 ,8 ]
Teixeira, Edmar [9 ]
Grosz, Balazs [10 ]
Doro, Luca [11 ]
Zhao, Zhigan [12 ]
Nendel, Claas [3 ]
Kiese, Ralf [13 ]
Eckersten, Henrik [14 ]
Haas, Edwin [15 ]
Vanuytrecht, Eline [16 ]
Wang, Enli [12 ]
Kuhnert, Matthias [5 ]
Trombi, Giacomo [19 ]
Moriondo, Marco [18 ]
Bindi, Marco [19 ]
Lewan, Elisabet [4 ]
Bach, Michaela [10 ]
Kersebaum, Kurt-Christian
Roetter, Reimund [6 ]
Roggero, Pier Paolo [11 ]
Wallach, Daniel [7 ,8 ]
Cammarano, Davide [17 ]
Asseng, Senthold [17 ]
Krauss, Gunther [1 ]
Siebert, Stefan [1 ]
Gaiser, Thomas [1 ]
Ewert, Frank [1 ]
机构
[1] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Crop Sci Grp, Katzenburgweg 5, D-53115 Bonn, Germany
[2] Wageningen Univ, Plant Prod Syst Grp, NL-6700 AK Wageningen, Netherlands
[3] Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany
[4] Swedish Univ Agr Sci, Dept Soil & Environm, Biogeophys & Water Qual, S-75007 Uppsala, Sweden
[5] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland
[6] MTT Agrifood, Jokioinen 31600, Finland
[7] INRA, UMR 1248, AGIR, F-31326 Auzeville, France
[8] INRA, UR0875 MIA T, F-31326 Auzeville, France
[9] NewZealand Inst Plantand Food Res Ltd, Syst Modelling Team, Sustainable Prod Grp, Canterbury Agr & Sci Ctr, Lincoln 7608, New Zealand
[10] Thunen Inst Climate Smart Agr, D-38116 Braunschweig, Germany
[11] Univ Sassari, Nuc Ricerca Sulla Desertificaz & Dipartimento Agr, I-07100 Sassari, Italy
[12] CSIRO Landwater, Canberra, ACT, Australia
[13] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany
[14] Swedish Univ Agr Sci, Dept Crop Prod Ecol, S-75007 Uppsala, Sweden
[15] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, Res Grp Regionalizat Biogen Trace Gas Fluxes, D-82467 Garmisch Partenkirchen, Germany
[16] Katholieke Univ Leuven, Div Soil & Water Management, B-3001 Heverlee, Belgium
[17] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
[18] CNR, Ibimet, I-50019 Sesto Fiorentino, Italy
[19] Univ Florence, Dept Agri Food Prod & Environm Sci, I-50144 Florence, Italy
[20] James Hutton Inst, Aberdeen AB15 8QH, Scotland
基金
瑞典研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Crop model; Model comparison; Spatial resolution; Data aggregation; Spatial heterogeneity; Scaling; CLIMATE-CHANGE; WINTER-WHEAT; DATA RESOLUTION; YIELD RESPONSE; INPUT DATA; SPATIAL-RESOLUTION; LARGE-SCALE; SOIL DATA; PART I; MODEL;
D O I
10.3354/cr01301
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.
引用
收藏
页码:141 / 157
页数:17
相关论文
共 83 条
[1]   Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions [J].
Adam, M. ;
Van Bussel, L. G. J. ;
Leffelaar, P. A. ;
Van Keulen, H. ;
Ewert, F. .
ECOLOGICAL MODELLING, 2011, 222 (01) :131-143
[2]   'Fingerprints' of four crop models as affected by soil input data aggregation [J].
Angulo, Carlos ;
Gaiser, Thomas ;
Rotter, Reimund Paul ;
Borgesen, Christen Duus ;
Hlavinka, Petr ;
Trnka, Mirek ;
Ewert, Frank .
EUROPEAN JOURNAL OF AGRONOMY, 2014, 61 :35-48
[3]   Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input [J].
Angulo, Carlos ;
Roetter, Reimund ;
Trnka, Mirek ;
Pirttioja, Nina ;
Gaiser, Thomas ;
Hlavinka, Petr ;
Ewert, Frank .
EUROPEAN JOURNAL OF AGRONOMY, 2013, 49 :104-114
[4]  
Asseng S, 2015, NAT CLIM CHANGE, V5, P143, DOI [10.1038/nclimate2470, 10.1038/NCLIMATE2470]
[5]  
Asseng S, 2013, NAT CLIM CHANGE, V3, P827, DOI [10.1038/nclimate1916, 10.1038/NCLIMATE1916]
[6]   Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2 [J].
Asseng, S ;
Jamieson, PD ;
Kimball, B ;
Pinter, P ;
Sayre, K ;
Bowden, JW ;
Howden, SM .
FIELD CROPS RESEARCH, 2004, 85 (2-3) :85-102
[7]   Performance of the APSIM-wheat model in Western Australia [J].
Asseng, S ;
Keating, BA ;
Fillery, IRP ;
Gregory, PJ ;
Bowden, JW ;
Turner, NC ;
Palta, JA ;
Abrecht, DG .
FIELD CROPS RESEARCH, 1998, 57 (02) :163-179
[8]   Spatial scale problems and geostatistical solutions: A review [J].
Atkinson, PM ;
Tate, NJ .
PROFESSIONAL GEOGRAPHER, 2000, 52 (04) :607-623
[9]   An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems [J].
Bergez, J. -E. ;
Chabrier, P. ;
Gary, C. ;
Jeuffroy, M. N. ;
Makowski, D. ;
Quesnel, G. ;
Ramat, E. ;
Raynal, H. ;
Rousse, N. ;
Wallach, D. ;
Debaeke, P. ;
Durand, P. ;
Duru, M. ;
Dury, J. ;
Faverdin, P. ;
Gascuel-Odoux, C. ;
Garcia, F. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 39 :39-49
[10]  
Bian L, 1999, PHOTOGRAMM ENG REM S, V65, P73