The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model

被引:485
作者
Park, Sungsu [1 ]
Bretherton, Christopher S. [1 ]
机构
[1] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
关键词
LARGE-EDDY SIMULATION; CUMULUS CONVECTION; SINGLE-COLUMN; MOMENTUM TRANSPORT; PART I; PARAMETERIZATION; CIRCULATION; FORMULATION; CYCLE;
D O I
10.1175/2008JCLI2557.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper describes a new version of the University of Washington shallow cumulus parameterization. The new version includes improved treatments of lateral mixing rates into cumulus updrafts, the evaporation of precipitation and of the interaction of cumuli with the underlying subcloud layer, and a treatment of the convective inhibition-based mass-flux closure that is more numerically stable and is suitable for the long time steps of global climate models. The paper also documents its performance when combined with a new moist turbulence parameterization in simulations with version 3.5 of the Community Atmosphere Model (CAM3.5). A single-column simulation of nonprecipitating trade cumulus shows considerable improvements in vertical thermodynamic structure and less resolution sensitivity in the new schemes compared to CAM3.5. In global simulations, the new schemes, combined with an increase of vertical resolution from 26 to 30 levels, produce a significant (7%) reduction in overall climate bias, calculated from root-mean-squared error of the seasonal model climatology compared to a suite of global observations of various fields. Biases in almost all fields, particularly the shortwave cloud radiative forcing, are reduced. Geographical bias patterns in surface rainfall, liquid water path, and surface air temperature are only mildly affected by the model parameterization and vertical resolution changes.
引用
收藏
页码:3449 / 3469
页数:21
相关论文
共 46 条
[1]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[2]  
2
[3]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[4]  
[Anonymous], GLOBAL ATMOS OCEAN S
[5]  
[Anonymous], 1999, NDP026C CARB DIOX IN
[6]   A New Moist Turbulence Parameterization in the Community Atmosphere Model [J].
Bretherton, Christopher S. ;
Park, Sungsu .
JOURNAL OF CLIMATE, 2009, 22 (12) :3422-3448
[7]  
Bretherton CS, 2004, MON WEATHER REV, V132, P864, DOI 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO
[8]  
2
[9]   The EPIC 2001 stratocumulus study [J].
Bretherton, CS ;
Uttal, T ;
Fairall, CW ;
Yuter, SE ;
Weller, RA ;
Baumgardner, D ;
Comstock, K ;
Wood, R ;
Raga, GB .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (07) :967-+
[10]   Large-eddy simulation of the diurnal cycle of shallow cumulus convection overland [J].
Brown, AR ;
Cederwall, RT ;
Chlond, A ;
Duynkerke, PG ;
Golaz, JC ;
Khairoutdinov, M ;
Lewellen, DC ;
Lock, AP ;
MacVean, MK ;
Moeng, CH ;
Neggers, RAJ ;
Siebesma, AP ;
Stevens, B .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2002, 128 (582) :1075-1093