Modelling cloud processing of aerosol during the ACE-2 HILLCLOUD experiment

被引:12
作者
Flynn, MJ
Bower, KN
Choularton, TW
Wobrock, W
Mäkelä, JM
Martinsson, B
Frank, G
Hansson, HC
Karlsson, H
Laj, P
机构
[1] Univ Manchester, Inst Sci & Technol, Dept Phys, Atmospher Phys Res Grp, Manchester M60 1QD, Lancs, England
[2] Lab Meteorol Phys, F-63177 Clermont Ferrand, France
[3] Univ Helsinki, Dept Phys, Helsinki, Finland
[4] Lund Univ, Div Nucl Phys, Lund, Sweden
[5] Univ Stockholm, Inst Appl Environm Res, Stockholm, Sweden
[6] CNR, Inst Phys & Chem Lower & Upper Atmosphere, I-40126 Bologna, Italy
来源
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY | 2000年 / 52卷 / 02期
关键词
D O I
10.1034/j.1600-0889.2000.00029.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A numerical model has been used to simulate the conditions observed during the ACE-2 Hillcloud experiment and to study the processes which may be taking place. The model incorporates gas phase chemistry of sulphur and nitrogen compounds upstream of the cloud, and the interaction of aerosol, precursor trace gases and oxidants within the cloud. Gas phase and aerosol inputs to the model have been provided from measurements made in the field. Dynamics of the air flow over the hill consisted of simple prescribed dynamics based on wind speed measurements, and also for some cases modelled dynamics. In this modelling study, it was found that during clean case studies particles down to 40-55 nm diameter were activated to form cloud droplets, the total number of droplets formed ranging from 200 to 400 drops/cm(3) Significant modification of the aerosol spectra due to cloud processing was observed. In polluted cases particles down to 65-80 nm diameter were activated to form cloud droplets, the total number of droplets ranging from 800 to 2800 drops/cm(3). Modification of the aerosol spectra due to cloud processing was slight. In all cases, changes in the aerosol spectra were due to both the uptake of HNO3, HCl, NH3 and SO2 from the gas phase, (the SO2 being oxidised to sulphate) and the repartitioning of species such as HNO3, HCl, and NH3 from larger particles onto smaller ones. Modelling results have been compared with observations made. Modelled droplet numbers are typically within 20% of the best measured values. The mode of the droplet distribution typically around 10 20 mu m for clean cases and 4-8 mu m for polluted cases was found to be in good agreement with the measured values of 10-25 mu m for clean cases, but not in such good agreement for polluted cases. Measurements of upwind and interstitial aerosol distributions showed that the smallest particles activated were 30 and 50 nm for clean and polluted cases respectively, slightly smaller than the model values quoted above. Measured upwind and downwind aerosol spectra showed similar modification to that predicted by the model in eight out of the eleven model runs carried out. Chemistry measurements also give general evidence for both the uptake of species from the gas phase, and repartitioning of species from large particles onto smaller ones, though comparisons For individual cases are more difficult. From this modelling study, it can be concluded that in general, in the remote environment the exchange of hydrochloric acid, nitric acid and ammonia between aerosol particles and take up from the gas phase in the vicinity of cloud may be a very important mechanism in regulating the evolution of the aerosol spectrum. Further, the much more linear relationship between cloud droplet and accumulation mode aerosol number, which was observed in the measurements made during the ACE-2 HILLCLOUD project is supported by these modelling results. The implications of this for the indirect effect will be explored in future work.
引用
收藏
页码:779 / 800
页数:22
相关论文
共 42 条
  • [1] EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY .3. IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY
    ATKINSON, R
    BAULCH, DL
    COX, RA
    HAMPSON, RF
    KERR, JA
    TROE, J
    [J]. JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1989, 18 (02) : 881 - 1097
  • [2] EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY SUPPLEMENT-IV - IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY
    ATKINSON, R
    BAULCH, DL
    COX, RA
    HAMPSON, RF
    KERR, JA
    TROE, J
    [J]. JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (06) : 1125 - 1568
  • [3] OXIDATION OF AQUEOUS SO2 BY PEROXYMONOSULFATE
    BETTERTON, EA
    HOFFMANN, MR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (21) : 5962 - 5965
  • [4] ACE-2 HILLCLOUD.: An overview of the ACE-2 ground-based cloud experiment
    Bower, BKN
    Choularton, TW
    Gallagher, MW
    Beswick, KM
    Flynn, MJ
    Allen, AG
    Davison, BM
    James, JD
    Robertson, L
    Harrison, RM
    Hewitt, CN
    Cape, JN
    McFadyen, GG
    Milford, C
    Sutton, MA
    Martinsson, BG
    Frank, G
    Swietlicki, E
    Zhou, J
    Berg, OH
    Mentes, B
    Papaspiropoulos, G
    Hansson, HC
    Leck, C
    Kulmala, M
    Aalto, P
    Väkevä, M
    Berner, A
    Bizjak, M
    Fuzzi, S
    Laj, P
    Facchini, MC
    Orsi, G
    Ricci, L
    Nielsen, M
    Allan, BJ
    Coe, H
    McFiggans, G
    Plane, JMC
    Collett, JL
    Moore, KF
    Sherman, DE
    [J]. TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2000, 52 (02) : 750 - 778
  • [5] The Great Dun Fell Experiment 1995: an overview
    Bower, KN
    Choularton, TW
    Gallagher, MW
    Colvile, RN
    Beswick, KM
    Inglis, DWF
    Bradbury, C
    Martinsson, BG
    Swietlicki, E
    Berg, OH
    Cederfelt, SI
    Frank, G
    Zhou, J
    Cape, JN
    Sutton, MA
    McFadyen, GG
    Milford, C
    Birmili, W
    Yuskiewicz, BA
    Wiedensohler, A
    Stratmann, F
    Wendisch, M
    Berner, A
    Ctyroky, P
    Galambos, Z
    Mesfin, SH
    Dusek, U
    Dore, CJ
    Lee, DS
    Pepler, SA
    Bizjak, M
    Divjak, B
    [J]. ATMOSPHERIC RESEARCH, 1999, 50 (3-4) : 151 - 184
  • [6] Observations and modelling of the processing of aerosol by a hill cap cloud
    Bower, KN
    Choularton, TW
    Gallagher, MW
    Colvile, RN
    Wells, M
    Beswick, KM
    Wiedensohler, A
    Hansson, HC
    Svenningsson, B
    Swietlicki, E
    Wendisch, M
    Berner, A
    Kruisz, C
    Laj, P
    Facchini, MC
    Fuzzi, S
    Bizjak, M
    Dollard, G
    Jones, B
    Acker, K
    Wieprecht, W
    Preiss, M
    Sutton, MA
    Hargreaves, KJ
    StoretonWest, RL
    Cape, JN
    Arends, BG
    [J]. ATMOSPHERIC ENVIRONMENT, 1997, 31 (16) : 2527 - 2543
  • [7] Modelling of aerosol modification resulting from passage through a hill cap cloud
    Bradbury, C
    Bower, KN
    Choularton, TW
    Swietlicki, E
    Birmili, W
    Wiedensohler, A
    Yuskiewicz, B
    Berner, A
    Dusek, U
    Dore, C
    McFadyen, GG
    [J]. ATMOSPHERIC RESEARCH, 1999, 50 (3-4) : 185 - 204
  • [8] BRANDT C, 1993, PHOTOOXIDANTS PRECUR, P593
  • [9] BUXTON GV, 1993, P EUROTRAC S 92, P610
  • [10] CLARK TL, 1994, J ATMOS SCI, V51, P2317, DOI 10.1175/1520-0469(1994)051<2317:TATDSO>2.0.CO