Besov regularity for elliptic boundary value problems

被引:74
作者
Dahlke, S [1 ]
DeVore, RA [1 ]
机构
[1] UNIV S CAROLINA,DEPT MATH,COLUMBIA,SC 29208
关键词
Besov spaces; elliptic boundary value problems; potential theory; adaptive methods; nonlinear approximation; wavelets;
D O I
10.1080/03605309708821252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the regularity of solutions to boundary value problems for the Laplace operator on Lipschitz domains Omega in R(d) and its relationship with adaptive and other nonlinear methods for approximating these solutions. The smoothness spaces which determine the efficiency of such nonlinear approximation in L(p)(Omega) are the Besov spaces B-tau(alpha)(L(tau)(Omega)), tau := (alpha/d + 1/p)(-1). Thus, the regularity of the solution in this scale of Besov spaces is investigated with the aim of determining the largest a for which the solution is in B-tau(alpha)(L tau(Omega)). The regularity theorems given in this paper build upon the recent results of Jerison and Kenig [10]. The proof of the regularity theorem uses characterizations of Besov spaces by wavelet expansions.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 14 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[3]  
Bergh J., 1976, INTERPOLATION SPACES
[4]  
COHEN A, 1995, 113 IGPM RWTH AACH
[5]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[6]  
DEVORE R, SOME REMARKS GREEDY
[7]  
DEVORE RA, 1990, MATH COMPUT, V55, P625, DOI 10.1090/S0025-5718-1990-1035930-5
[8]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[9]  
DEVORE RA, 1984, MEM AM MATH SOC, V293, P1
[10]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170