Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle

被引:835
作者
Cusi, K
Maezono, K
Osman, A
Pendergrass, M
Patti, ME
Pratipanawatr, T
DeFronzo, RA
Kahn, CR
Mandarino, LJ
机构
[1] Univ Texas, Hlth Sci Ctr, Div Diabet, Dept Med, San Antonio, TX 78229 USA
[2] Harvard Univ, Sch Med, Joslin Diabet Ctr, Boston, MA 02215 USA
关键词
D O I
10.1172/JCI7535
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The broad nature of insulin resistant glucose metabolism in skeletal muscle of patients with type 2 diabetes suggests a defect in the proximal part of the insulin signaling network. We sought to identify the pathways compromised in insulin resistance and to test the effect of moderate exercise on whole-body and cellular insulin action. We conducted euglycemic clamps and muscle biopsies on type 2 diabetic patients, obese nondiabetics and lean controls, with and without a single bout of exercise. Insulin stimulation of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway, as measured by phosphorylation of the insulin receptor and IRS-1 and by IRS protein association with p85 and with PI 3-kinase, was dramatically reduced in obese nondiabetics and virtually absent in type 2 diabetic patients. Insulin stimulation of the MAP kinase pathway was normal in obese and diabetic subjects. Insulin stimulation of glucose-disposal correlated with association of p85 with IRS-1. Exercise 24 hours before the euglycemic clamp increased phosphorylation of insulin receptor and IRS-1 in obese and diabetic subjects but did not increase glucose uptake or PI S-kinase association with IRS-1 upon insulin stimulation. Thus, insulin resistance differentially affects the PI 3-kinase and MAP kinase signaling pathways, and insulin-stimulated IRS-l-association with PI 3-kinase defines a key step in insulin resistance.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 47 条
  • [1] ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE
    ARAKI, E
    LIPES, MA
    PATTI, ME
    BRUNING, JC
    HAAG, B
    JOHNSON, RS
    KAHN, CR
    [J]. NATURE, 1994, 372 (6502) : 186 - 190
  • [2] Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle
    Aronson, D
    Violan, MA
    Dufresne, SD
    Zangen, D
    Fielding, RA
    Goodyear, LJ
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (06) : 1251 - 1257
  • [3] INSULIN-RECEPTOR FUNCTION AND GLYCOGEN-SYNTHASE ACTIVITY IN SKELETAL-MUSCLE BIOPSIES FROM PATIENTS WITH INSULIN-DEPENDENT DIABETES-MELLITUS - EFFECTS OF PHYSICAL-TRAINING
    BAK, JF
    JACOBSEN, UK
    JORGENSEN, FS
    PEDERSEN, O
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1989, 69 (01) : 158 - 164
  • [4] Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation
    Bjornholm, M
    Kawano, Y
    Lehtihet, M
    Zierath, JR
    [J]. DIABETES, 1997, 46 (03) : 524 - 527
  • [5] CORRELATION BETWEEN MUSCLE GLYCOGEN-SYNTHASE ACTIVITY AND INVIVO INSULIN ACTION IN MAN
    BOGARDUS, C
    LILLIOJA, S
    STONE, K
    MOTT, D
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1984, 73 (04) : 1185 - 1190
  • [6] Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM
    Bonadonna, RC
    DelPrato, S
    Bonora, E
    Saccomani, MP
    Gulli, G
    Natali, A
    Frascerra, S
    Pecori, N
    Ferrannini, E
    Bier, D
    Cobelli, DBC
    DeFronzo, RA
    [J]. DIABETES, 1996, 45 (07) : 915 - 925
  • [7] Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle
    Brozinick, JT
    Birnbaum, MJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) : 14679 - 14682
  • [8] PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION
    CHEATHAM, B
    VLAHOS, CJ
    CHEATHAM, L
    WANG, L
    BLENIS, J
    KAHN, CR
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) : 4902 - 4911
  • [9] Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase
    DeFea, K
    Roth, RA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) : 31400 - 31406
  • [10] DEVLIN J, 1986, DIABETES, V36, P434